Fluoroacetic acid


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δcliquid-714.84kJ/molCcbSwarts, 1919Not corrected for CODATA value of ΔfH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: William E. Acree, Jr., James S. Chickos

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
52.3308.AStephenson and Malanowski, 1987Based on data from 293. to 443. K. See also Dykyj, 1970.
53.6308.TJasper and Miller, 1955Based on data from 293. to 443. K.

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

FCH2CO2 anion + Hydrogen cation = Fluoroacetic acid

By formula: C2H2FO2- + H+ = C2H3FO2

Quantity Value Units Method Reference Comment
Δr1418. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1417. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1416. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr1387. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1386. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1385. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Swarts, 1919
Swarts, F., Etudes thermochimiques sur les combinaisons organiques fluorees, J. Chim. Phys., 1919, 17, 3-70. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Jasper and Miller, 1955
Jasper, Joseph J.; Miller, George B., The Vapor Pressure of Monofluoroacetic Acid, J. Phys. Chem., 1955, 59, 5, 441-442, https://doi.org/10.1021/j150527a015 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References