1-Nonanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-377. ± 9.kJ/molAVGN/AAverage of 7 values; Individual data points

Phase change data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Tboil485. ± 9.KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Tc672. ± 8.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc25.3 ± 0.5barN/AGude and Teja, 1995 
Pc25.10barN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.60 bar; TRC
Pc25.46barN/ARosenthal and Teja, 1990Uncertainty assigned by TRC = 0.20 bar; TRC
Pc25.46barN/ARosenthal and Teja, 1989Uncertainty assigned by TRC = 0.20 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.572l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc1.75 ± 0.05mol/lN/AGude and Teja, 1995 
ρc1.83mol/lN/ATeja, Lee, et al., 1989TRC
ρc1.75mol/lN/AAnselme and Teja, 1988Uncertainty assigned by TRC = 0.04 mol/l; TRC
ρc1.84mol/lN/AEfremov, 1966Uncertainty assigned by TRC = 0.02 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap77. ± 6.kJ/molAVGN/AAverage of 9 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
65.0383.AStephenson and Malanowski, 1987Based on data from 368. to 500. K.; AC
62.9396.AStephenson and Malanowski, 1987Based on data from 381. to 495. K.; AC
59.7440.EBHon, Singh, et al., 1976Based on data from 425. to 494. K.; AC
64.5383.N/AWilhoit and Zwolinski, 1973Based on data from 368. to 487. K.; AC
65.5380.DTAKemme and Kreps, 1969Based on data from 365. to 487. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
364.8 to 486.83.961571373.417-139.182Kemme and Kreps, 1969

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

De-protonation reactions

C9H19O- + Hydrogen cation = 1-Nonanol

By formula: C9H19O- + H+ = C9H20O

Quantity Value Units Method Reference Comment
Δr1567. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1561. ± 13.kJ/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1553. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1540. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1534. ± 13.kJ/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1525. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-3672
NIST MS number 229864

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J., Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols, J. Chem. Thermodyn., 1991, 23, 67-76. [all data]

Rosenthal and Teja, 1990
Rosenthal, D.J.; Teja, A.S., The Critical Pressures and temperatures of Isomeric Alkanols, Ind. Eng. Chem. to be published 1990 1990, 1990. [all data]

Rosenthal and Teja, 1989
Rosenthal, D.J.; Teja, A.S., Critical pressures and temperatures of isomeric alkanols, Ind. Eng. Chem. Res., 1989, 28, 1693. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Anselme and Teja, 1988
Anselme, M.J.; Teja, A.S., Critical Temperatures and Densities of Isomeric Alkanols with Six to Ten Carbon Atoms, Fluid Phase Equilib., 1988, 40, 127-34. [all data]

Efremov, 1966
Efremov, Yu.V., Density, Surface Tension, Saturated Vapor Pressurs and Critical Parameters of Alcohols, Zh. Fiz. Khim., 1966, 40, 1240. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Hon, Singh, et al., 1976
Hon, Huynh C.; Singh, Rakesh P.; Kudchadker, Arvind P., Vapor pressure-boiling point measurements of five organic substances by twin ebulliometry, J. Chem. Eng. Data, 1976, 21, 4, 430-431, https://doi.org/10.1021/je60071a011 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References