n-Butyl ether
- Formula: C8H18O
- Molecular weight: 130.2279
- IUPAC Standard InChIKey: DURPTKYDGMDSBL-UHFFFAOYSA-N
- CAS Registry Number: 142-96-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Butane, 1,1'-oxybis-; Butyl ether; n-Dibutyl ether; Di-n-butyl ether; Dibutyl ether; Dibutyl oxide; 1,1'-Oxybis(butane); (n-C4H9)2O; 1-Butoxybutane; Butyl oxide; Ether butylique; UN 1149; NSC 8459
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 415. ± 1. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 175.25 | K | N/A | Timmermans, 1952 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tfus | 177.78 | K | N/A | Dreisbach and Martin, 1949 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 588.1 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 584.1 | K | N/A | Toczylkin. L.S. and Young, 1980 | Uncertainty assigned by TRC = 0.58 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 29.71 | atm | N/A | Toczylkin. L.S. and Young, 1980 | Uncertainty assigned by TRC = 0.2968 atm; Visual; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 11. | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 10.7 ± 0.02 | kcal/mol | C | Fuchs, Peacock, et al., 1982 | AC |
ΔvapH° | 10.75 | kcal/mol | C | Majer, Wagner, et al., 1980 | ALS |
ΔvapH° | 10.8 ± 0.02 | kcal/mol | C | Majer, Wagner, et al., 1980 | AC |
ΔvapH° | 10.6 | kcal/mol | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 362. to 414. K.; AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
8.721 | 413.5 | N/A | Majer and Svoboda, 1985 | |
9.78 | 354. | A | Stephenson and Malanowski, 1987 | Based on data from 339. to 415. K.; AC |
9.97 | 351. | A | Stephenson and Malanowski, 1987 | Based on data from 336. to 415. K.; AC |
8.70 | 413. | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 362. to 414. K.; AC |
9.70 | 377. | EB | Cidlinský and Polák, 1969 | Based on data from 362. to 413. K.; AC |
9.42 | 413. | N/A | Nisel'son and Lapivus, 1965 | Based on data from 386. to 440. K.; AC |
11.2 | 293. | V | Skuratov, Strepikheev, et al., 1957 | Combustion at 293 K; ALS |
10.50 ± 0.10 | 414.3 | V | Mathews and Fehlandt, 1931 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 8.83 kcal/mol; ALS |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 358. | 15.42 | 0.2974 | 588.1 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference |
---|---|---|---|---|
362.29 to 413.21 | 3.92447 | 1302.768 | -81.481 | Cidlinský and Polák, 1969 |
IR Spectrum
Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Sadtler Research Labs Under US-EPA Contract |
State | gas |
Mass spectrum (electron ionization)
Go To: Top, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 563 |
NIST MS number | 228442 |
References
Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Timmermans, 1952
Timmermans, J.,
Freezing points of organic compounds. VVI New determinations.,
Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]
Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A.,
Physical Data on Some Organic Compounds,
Ind. Eng. Chem., 1949, 41, 2875-8. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Toczylkin. L.S. and Young, 1980
Toczylkin. L.S.; Young, C.L.,
Gas-liquid critical temperatures of mixtures containing electron donors II. Ether mixtures,
J. Chem. Thermodyn., 1980, 12, 355-64. [all data]
Fuchs, Peacock, et al., 1982
Fuchs, Richard; Peacock, L. Alan; Stephenson, W. Kirk,
Enthalpies of interaction of polar and nonpolar molecules with aromatic solvents,
Can. J. Chem., 1982, 60, 15, 1953-1958, https://doi.org/10.1139/v82-273
. [all data]
Majer, Wagner, et al., 1980
Majer, V.; Wagner, Z.; Svoboda, V.; Cadek, V.,
Enthalpies of vaporization and cohesive energies for a group of aliphatic ethers,
J. Chem. Thermodyn., 1980, 12, 387-391. [all data]
Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers,
The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Cidlinský and Polák, 1969
Cidlinský, J.; Polák, J.,
Saturated vapour pressures of some ethers,
Collect. Czech. Chem. Commun., 1969, 34, 4, 1317-1321, https://doi.org/10.1135/cccc19691317
. [all data]
Nisel'son and Lapivus, 1965
Nisel'son, L.A.; Lapivus, I.I.,
Russ. J. Phys. Chem., 1965, 39, 80. [all data]
Skuratov, Strepikheev, et al., 1957
Skuratov, S.M.; Strepikheev, A.A.; Kozina, M.P.,
About the reaction activity of five and six-membered heterocyclic compounds,
Dokl. Akad. Nauk SSSR, 1957, 117, 452-454. [all data]
Mathews and Fehlandt, 1931
Mathews, J.H.; Fehlandt, P.R.,
The heats of vaporization of some organic compounds,
J. Am. Chem. Soc., 1931, 53, 3212-32. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Notes
Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.