Tetrahydropyran

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-53.50 ± 0.24kcal/molCmPell and Pilcher, 1965ALS
Δfgas-52.6 ± 0.6kcal/molCcbSnelson and Skinner, 1961ALS
Δfgas-53.39 ± 0.37kcal/molCcbCass, Fletcher, et al., 1958Reanalyzed by Cox and Pilcher, 1970, Original value = -50.7 kcal/mol; ALS
Quantity Value Units Method Reference Comment
Δcgas-758.44 ± 0.23kcal/molCmPell and Pilcher, 1965Corresponding Δfgas = -53.39 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.10250.Dorofeeva O.V., 1992p=1 bar. Selected values are in close agreement with those calculated by [ Vedal D., 1975].; GT
9.947100.
12.68150.
15.84200.
21.52273.15
23.70 ± 0.72298.15
23.86300.
32.765400.
40.872500.
47.729600.
53.456700.
58.270800.
62.340900.
65.8031000.
68.7571100.
71.2861200.
73.4561300.
75.3251400.
76.9411500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-60.9 ± 0.4kcal/molCcbSnelson and Skinner, 1961ALS
Quantity Value Units Method Reference Comment
Δcliquid-750.94 ± 0.31kcal/molCcbSnelson and Skinner, 1961Corresponding Δfliquid = -60.89 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-752.8 ± 1.5kcal/molCcbCass, Fletcher, et al., 1958Corresponding Δfliquid = -59.0 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-749.90 ± 0.20kcal/molCcbSkuratov, Strepikheev, et al., 1957Reanalyzed by Cox and Pilcher, 1970, Original value = -750.1 ± 0.2 kcal/mol; Combustion at 293 K; Corresponding Δfliquid = -61.93 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
35.755298.15Inglese, Grolier, et al., 1984DH
35.662298.15Inglese, Castagnolo, et al., 1981DH
33.60298.Conti, Gianni, et al., 1976DH
36.121297.62Moelwyn-Hughes and Thorpe, 1964T = 297 to 327 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil361.0 ± 0.7KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus224.KN/AGuieu, Carbonnel, et al., 1985Crystal phase 1 phase; Uncertainty assigned by TRC = 0.1 K; TRC
Tfus224.15KN/ABrooks and Pilcher, 1959Uncertainty assigned by TRC = 1. K; TRC
Tfus223.95KN/AAnonymous, 1942Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tc572.2KN/AKobe and Mathews, 1970Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Pc47.08atmN/AKobe and Mathews, 1970Uncertainty assigned by TRC = 0.1399 atm; TRC
Quantity Value Units Method Reference Comment
ρc3.8124mol/lN/AKobe and Mathews, 1970Uncertainty assigned by TRC = 0.0056 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap8.286kcal/molN/AMajer and Svoboda, 1985 
Δvap9.13 ± 0.26kcal/molDSCRojas-Aguilar, Ginez-Carbajal, et al., 2005AC
Δvap8.37kcal/molN/ASnelson and Skinner, 1961DRB
Δvap8.35kcal/molVCass, Fletcher, et al., 1958ALS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
7.450361.N/AMajer and Svoboda, 1985 
8.6301.N/ARodríguez, Giner, et al., 2006Based on data from 286. to 361. K.; AC
7.93350.N/ARodriguez, Artigas, et al., 2000Based on data from 335. to 412. K.; AC
8.37288.AStephenson and Malanowski, 1987Based on data from 273. to 362. K.; AC
8.37281.N/ADykyj, 1972Based on data from 273. to 288. K. See also Cass, Fletcher, et al., 1958, 2.; AC
8.5293.VSkuratov, Strepikheev, et al., 1957Combustion at 293 K; ALS

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

2H-Pyran, 3,4-dihydro- + Hydrogen = Tetrahydropyran

By formula: C5H8O + H2 = C5H10O

Quantity Value Units Method Reference Comment
Δr-24.69 ± 0.24kcal/molChydAllinger, Glaser, et al., 1981liquid phase; solvent: Hexane

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1046
NIST MS number 229215

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pell and Pilcher, 1965
Pell, A.S.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 3.-Ethylene oxide, trimethylene oxide, tetrahydrofuran and tetrahydropy, Trans. Faraday Soc., 1965, 61, 71-77. [all data]

Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A., Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran, Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]

Cass, Fletcher, et al., 1958
Cass, R.C.; Fletcher, S.E.; Mortimer, C.T.; Springall, H.D.; White, T.R., Heats of combustion and molecular structure. Part V. The mean bond energy term for the C-O bond in ethers, and the structures of some cyclic ethers, J. Chem. Soc., 1958, 1406-1410. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Dorofeeva O.V., 1992
Dorofeeva O.V., Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 2. Six-membered, seven-membered and eight-membered rings, Thermochim. Acta, 1992, 200, 121-150. [all data]

Vedal D., 1975
Vedal D., Vibrational spectra of pentamethylene sulfide and selenide, Spectrochim. Acta, 1975, A31, 355-372. [all data]

Skuratov, Strepikheev, et al., 1957
Skuratov, S.M.; Strepikheev, A.A.; Kozina, M.P., About the reaction activity of five and six-membered heterocyclic compounds, Dokl. Akad. Nauk SSSR, 1957, 117, 452-454. [all data]

Inglese, Grolier, et al., 1984
Inglese, A.; Grolier, J.-P.E.; Wilhelm, E., Excess volumes and excess heat capacities of oxane + cyclohexane and 1,4-dioxane + cyclohexane, Fluid Phase Equilibria, 1984, 15, 287-294. [all data]

Inglese, Castagnolo, et al., 1981
Inglese, A.; Castagnolo, M.; Dell'Atti, A.; DeGiglio, A., Thermochim. Acta, 1981, 77-87. [all data]

Conti, Gianni, et al., 1976
Conti, G.; Gianni, P.; Matteoli, E.; Mengheri, M., Capacita termiche molari di alcuni composti organici mono- e bifunzionali nel liquido puro e in soluzione acquosa a 25C, Chim. Ind. (Milan), 1976, 58, 225. [all data]

Moelwyn-Hughes and Thorpe, 1964
Moelwyn-Hughes, E.A.; Thorpe, P.L., The physical and thermodynamic properties of some associated solutions. II. Heat capacities and compressibilities, Proc. Roy. Soc. (London), 1964, 278A, 574-587. [all data]

Guieu, Carbonnel, et al., 1985
Guieu, R.; Carbonnel, L.; Kehiaian, H.V., Solutions solides organiques I. Etude des diagrammes de phases des systemes oxanne ou 1,4-dioxanne + cyclohexane, Bull. Soc. Chim. Fr., 1985, 1985, 709. [all data]

Brooks and Pilcher, 1959
Brooks, J.H.; Pilcher, G., A Simple Melting Point Calorimeter for Moderately Precise Determination of Purity, J. Chem. Soc., 1959, 1959, 1535. [all data]

Anonymous, 1942
Anonymous, R., , Am. Pet. Inst. Res. Proj. 6, Natl. Bur. Stand., 1942. [all data]

Kobe and Mathews, 1970
Kobe, K.A.; Mathews, J.F., Critical Properties and Vapor Pressures of Some Organic Nitrogen and Oxygen Compounds, J. Chem. Eng. Data, 1970, 15, 182. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Rojas-Aguilar, Ginez-Carbajal, et al., 2005
Rojas-Aguilar, A.; Ginez-Carbajal, F.; Orozco-Guareno, E.; Flores-Segura, H., Measurement of enthalpies of vaporization of volatile heterocyclic compounds by DSC, J Therm Anal Calorim, 2005, 79, 1, 95-100, https://doi.org/10.1007/s10973-004-0568-3 . [all data]

Rodríguez, Giner, et al., 2006
Rodríguez, S.; Giner, B.; Haro, M.; Martín, S.; Artigas, H., Isobaric vapour--liquid equilibrium for the binary systems formed by a cyclic ether and bromocyclohexane at 40.0 and 101.3 kPa, Physics and Chemistry of Liquids, 2006, 44, 3, 275-285, https://doi.org/10.1080/00319100600574168 . [all data]

Rodriguez, Artigas, et al., 2000
Rodriguez, S.; Artigas, H.; Lafuente, C.; Mainar, A.M.; Royo, F.M., Isobaric vapour--liquid equilibrium of binary mixtures of some cyclic ethers with chlorocyclohexane at 40.0 and 101.3 kPa, Thermochimica Acta, 2000, 362, 1-2, 153-160, https://doi.org/10.1016/S0040-6031(00)00580-3 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1972
Dykyj, J., Petrochemia, 1972, 12, 1, 13. [all data]

Cass, Fletcher, et al., 1958, 2
Cass, R.C.; Fletcher, S.E.; Mortimer, C.T.; Quincey, P.G.; Springall, H.D., 193. Heats of combustion and molecular structure. Part IV. Aliphatic nitroalkanes and nitric esters, J. Chem. Soc., 1958, 958, https://doi.org/10.1039/jr9580000958 . [all data]

Allinger, Glaser, et al., 1981
Allinger, N.L.; Glaser, J.A.; Davis, H.E., Heats of hydrogenation of some vinyl ethers and related compounds, J. Org. Chem., 1981, 46, 658-661. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References