Cyclopentene
- Formula: C5H8
- Molecular weight: 68.1170
- IUPAC Standard InChIKey: LPIQUOYDBNQMRZ-UHFFFAOYSA-N
- CAS Registry Number: 142-29-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 36. | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | ALS |
ΔfH°gas | 34. | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | ALS |
ΔfH°gas | 32.6 | kJ/mol | N/A | Labbauf and Rossini, 1961 | Value computed using ΔfHliquid° value of 4.27±0.63 kj/mol from Labbauf and Rossini, 1961 and ΔvapH° value of 28.37 kj/mol from missing citation.; DRB |
ΔfH°gas | 33.2 | kJ/mol | N/A | Epstein, Pitzer, et al., 1949 | Value computed using ΔfHliquid° value of 4.85±0.67 kj/mol from Epstein, Pitzer, et al., 1949 and ΔvapH° value of 28.37 kj/mol from missing citation.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 289.66 | J/mol*K | N/A | Beckett C.W., 1948 | GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
35.92 | 50. | Dorofeeva O.V., 1986 | Although S(298.15 K) value is 1.6 J/mol*K larger than that obtained from calorimetric data [ Beckett C.W., 1948] and calculated in previous works [ Beckett C.W., 1948, Epstein M.B., 1949, Furuyama S., 1970, Draeger J.A., 1983], it is selected here because of using the most reliable vibrational frequencies in [ Dorofeeva O.V., 1986]. The recommended thermodynamic functions are in good agreement with results of detail force-field calculations [ Lenz T.G., 1989, Lenz T.G., 1990]. Discrepancies with above mentioned calculations amount to 1.6-9.1 and 0.8-6.2 J/mol*K for S(T) and Cp(T), respectively.; GT |
40.37 | 100. | ||
45.72 | 150. | ||
54.74 | 200. | ||
73.82 | 273.15 | ||
81.3 ± 2.0 | 298.15 | ||
81.84 | 300. | ||
112.08 | 400. | ||
138.99 | 500. | ||
161.38 | 600. | ||
179.95 | 700. | ||
195.52 | 800. | ||
208.71 | 900. | ||
219.96 | 1000. | ||
229.60 | 1100. | ||
237.88 | 1200. | ||
245.02 | 1300. | ||
251.19 | 1400. | ||
256.53 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 4.27 ± 0.63 | kJ/mol | Ccb | Labbauf and Rossini, 1961 | ALS |
ΔfH°liquid | 4.85 ± 0.67 | kJ/mol | Ccb | Epstein, Pitzer, et al., 1949 | Unpubished results; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3115.2 ± 0.59 | kJ/mol | Ccb | Labbauf and Rossini, 1961 | Corresponding ΔfHºliquid = 4.31 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 201.25 | J/mol*K | N/A | Huffman, Eaton, et al., 1948 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
122.38 | 298.15 | Huffman, Eaton, et al., 1948 | T = 12 to 300 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 317. ± 2. | K | AVG | N/A | Average of 28 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 138. ± 1. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 138.13 | K | N/A | Huffman, Eaton, et al., 1948, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 506.5 ± 0.5 | K | N/A | Tsonopoulos and Ambrose, 1996 | |
Tc | 507.6 | K | N/A | Teja and Anselme, 1990 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tc | 507.0 | K | N/A | Teja and Rosenthal, 1990 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tc | 506.1 | K | N/A | Ambrose and Grant, 1957 | Uncertainty assigned by TRC = 0.15 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 48.0 ± 0.5 | bar | N/A | Tsonopoulos and Ambrose, 1996 | |
Pc | 48.02 | bar | N/A | Teja and Rosenthal, 1990 | Uncertainty assigned by TRC = 0.30 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.245 | l/mol | N/A | Tsonopoulos and Ambrose, 1996 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 4.08 ± 0.05 | mol/l | N/A | Tsonopoulos and Ambrose, 1996 | |
ρc | 4.08 | mol/l | N/A | Teja and Anselme, 1990 | Uncertainty assigned by TRC = 0.09 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 28.37 | kJ/mol | V | Lister, 1941 | Halogenation at 27 C; ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
29.9 | 264. | A | Stephenson and Malanowski, 1987 | Based on data from 249. to 318. K.; AC |
24.8 | 299. | MM | Forziati, Camin, et al., 1950 | Based on data from 289. to 318. K.; AC |
28.4 | 300. | N/A | Lister, 1941 | Based on data from 230. to 293. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
3.36 | 138.1 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
5.51 | 87.07 | Domalski and Hearing, 1996 | CAL |
24.32 | 138.1 |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.4795 | 87.07 | crystaline, II | crystaline, I | Huffman, Eaton, et al., 1948 | DH |
3.3634 | 138.13 | crystaline, I | liquid | Huffman, Eaton, et al., 1948 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
9.51 | 87.07 | crystaline, II | crystaline, I | Huffman, Eaton, et al., 1948 | DH |
24.35 | 138.13 | crystaline, I | liquid | Huffman, Eaton, et al., 1948 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -112.7 ± 0.54 | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane |
ΔrH° | -112. ± 0.8 | kJ/mol | Chyd | Roth and Lennartz, 1980 | liquid phase; solvent: Cyclohexane |
ΔrH° | -109.0 ± 1.8 | kJ/mol | Chyd | Turner, Jarrett, et al., 1973 | liquid phase; solvent: Acetic acid |
ΔrH° | -110. ± 0.8 | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon |
ΔrH° | -111.6 ± 0.3 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -112.6 ± 0.3 kJ/mol; At 355 °K |
By formula: C5H8 + C2HF3O2 = C7H9F3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -38.35 ± 0.18 | kJ/mol | Cac | Wiberg, Wasserman, et al., 1985 | liquid phase; solvent: Trifluoroacetic acid; Trifluoroacetolysis |
By formula: C5H8 + Br2 = C5H8Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -119.7 ± 2.5 | kJ/mol | Cm | Lister, 1941 | gas phase; Halogenation at 27 C |
By formula: C5H10 + I2 = 2HI + C5H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102.1 | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | gas phase |
By formula: 2HI + C5H6 = C5H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -89.5 | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | gas phase |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.015 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.016 | V | N/A |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-3720 |
NIST MS number | 227659 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Pickett, Muntz, et al., 1951 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 47 |
Instrument | Hilger fluorite prism spectrograph |
Melting point | -135.1 |
Boiling point | 44.2 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N.,
Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements,
Tetrahedron, 1982, 38, 1593-1597. [all data]
Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W.,
Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria,
J. Chem. Thermodyn., 1970, 2, 161-169. [all data]
Labbauf and Rossini, 1961
Labbauf, A.; Rossini, F.D.,
Heats of combustion, formation, and hydrogenation of 14 selected cyclomonoolefin hydrocarbons,
J. Phys. Chem., 1961, 65, 476-480. [all data]
Epstein, Pitzer, et al., 1949
Epstein, M.B.; Pitzer, K.S.; Rossini, F.D.,
Heats, equilibrium constants, and free energies of formation of cyclopentene and cyclohexene,
J. Res. NBS, 1949, 42, 379-382. [all data]
Beckett C.W., 1948
Beckett C.W.,
The thermodynamic properties and molecular structure of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 4227-4230. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
Thermodynamic properties of twenty-one monocyclic hydrocarbons,
J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]
Epstein M.B., 1949
Epstein M.B.,
Heats, equilibrium constants, and free energies of formation of cyclopentene and cyclohexene,
J. Res. Nat. Bur. Stand., 1949, 42, 379-382. [all data]
Furuyama S., 1970
Furuyama S.,
Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria,
J. Chem. Thermodyn., 1970, 2, 161-169. [all data]
Draeger J.A., 1983
Draeger J.A.,
Chemical thermodynamic properties of molecules that undergo inversion. I. Aniline, methylamine, cyclopropylamine, and cyclopentene,
J. Chem. Thermodyn., 1983, 15, 367-376. [all data]
Lenz T.G., 1989
Lenz T.G.,
Force-field calculations giving accurate conformation, Hf(T), S(T), and Cp(T) for unsaturated acyclic and cyclic hydrocarbons,
J. Phys. Chem., 1989, 93, 1588-1592. [all data]
Lenz T.G., 1990
Lenz T.G.,
Force field calculation of equilibrium thermodynamic properties: Diels-Alder reaction of 1,3-butadiene and ethylene and Diels-Alder dimerization of 1,3-butadiene,
J. Comput. Chem., 1990, 11, 351-360. [all data]
Huffman, Eaton, et al., 1948
Huffman, H.M.; Eaton, M.; Oliver, G.D.,
The heat capacities, heats of transition, heats of fusion and entropies of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 2911-2914. [all data]
Huffman, Eaton, et al., 1948, 2
Huffman, H.M.; Eaton, M.; Oliver, G.D.,
The heat capacities, heats of transition, heats of fusion and entropies of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 2911. [all data]
Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons,
J. Chem. Eng. Data, 1996, 41, 645-656. [all data]
Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J.,
The critical properties of thermally stable and unstable fluids. II. 1986 results,
AIChE Symp. Ser., 1990, 86, 279, 122-7. [all data]
Teja and Rosenthal, 1990
Teja, A.S.; Rosenthal, D.J.,
The Critical Pressures and Temperatures of Twelve Substances Using A Low Residence Time Flow Apparatus,
AIChE Symp. Ser., 1990, 86, 279, 133-7. [all data]
Ambrose and Grant, 1957
Ambrose, D.; Grant, D.G.,
The Critical Temperatures of Some Hydrocarbons and Pyridine Bases,
Trans. Faraday Soc., 1957, 53, 771. [all data]
Lister, 1941
Lister, M.W.,
Heats of organic reactions. X. Heats of bromination of cyclic olefins,
J. Am. Chem. Soc., 1941, 63, 143-149. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Forziati, Camin, et al., 1950
Forziati, A.F.; Camin, D.L.; Rossini, F.D.,
Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,
J. RES. NATL. BUR. STAN., 1950, 45, 5, 406, https://doi.org/10.6028/jres.045.044
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W.,
Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter,
Chem. Ber., 1980, 113, 1806-1817. [all data]
Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J.,
Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins,
J. Am. Chem. Soc., 1973, 95, 790-792. [all data]
Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J.,
A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring,
Tetrahedron, 1971, 27, 3765-3775. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Wiberg, Wasserman, et al., 1985
Wiberg, K.B.; Wasserman, D.J.; Martin, E.J.; Murcko, M.A.,
Enthalpies of hydration of alkenes. 3. Cycloalkenes,
J. Am. Chem. Soc., 1985, 107, 6019-6022. [all data]
Pickett, Muntz, et al., 1951
Pickett, L.W.; Muntz, M.; McPherson, E.M.,
Vacuum ultraviolet absorption spectra of cyclic compounds. I. Cyclohexane, cyclohexene, cyclopentane, Cyclopentene and benzene,
J. Am. Chem. Soc., 1951, 73, 4862-4865. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.