Ethyl Acetate

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H9Si+ + Ethyl Acetate = (C3H9Si+ • Ethyl Acetate)

By formula: C3H9Si+ + C4H8O2 = (C3H9Si+ • C4H8O2)

Quantity Value Units Method Reference Comment
Δr48.7kcal/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr31.4cal/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
34.0468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + Ethyl Acetate = (C3H9Sn+ • Ethyl Acetate)

By formula: C3H9Sn+ + C4H8O2 = (C3H9Sn+ • C4H8O2)

Quantity Value Units Method Reference Comment
Δr40.2kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr33.cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
22.9525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C4H7O2- + Hydrogen cation = Ethyl Acetate

By formula: C4H7O2- + H+ = C4H8O2

Quantity Value Units Method Reference Comment
Δr371.7 ± 4.1kcal/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B
Δr368.9 ± 1.2kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr365.0 ± 4.0kcal/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B

C4H9O2+ + Ethyl Acetate = (C4H9O2+ • Ethyl Acetate)

By formula: C4H9O2+ + C4H8O2 = (C4H9O2+ • C4H8O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.2kcal/molPHPMSSzulejko and McMahon, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr34.6cal/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M

Nitric oxide anion + Ethyl Acetate = (Nitric oxide anion • Ethyl Acetate)

By formula: NO- + C4H8O2 = (NO- • C4H8O2)

Quantity Value Units Method Reference Comment
Δr41.5kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Acetic acid ethenyl ester + Hydrogen = Ethyl Acetate

By formula: C4H6O2 + H2 = C4H8O2

Quantity Value Units Method Reference Comment
Δr-30.9 ± 1.1kcal/molChydVilcu and Perisanu, 1980liquid phase; ALS
Δr-31.12 ± 0.06kcal/molChydDolliver, Gresham, et al., 1938gas phase; At 355 °K; ALS

Acetylimidazole diethyl acetal + Water = Ethyl Acetate + 1H-Imidazole + Ethanol

By formula: C9H16N2O2 + H2O = C4H8O2 + C3H4N2 + C2H6O

Quantity Value Units Method Reference Comment
Δr-10.68 ± 0.16kcal/molCmGuthrie and Pike, 1987liquid phase; Heat of hydrolysis; ALS

Ethyl Acetate + Water = Ethanol + Acetic acid

By formula: C4H8O2 + H2O = C2H6O + C2H4O2

Quantity Value Units Method Reference Comment
Δr0.89 ± 0.04kcal/molCmWadso, 1958liquid phase; Heat of hydrolysis; ALS

Ethanol + Acetic acid = Ethyl Acetate + Water

By formula: C2H6O + C2H4O2 = C4H8O2 + H2O

Quantity Value Units Method Reference Comment
Δr3.97 ± 0.08kcal/molEqkHalford and Brundage, 1942gas phase; At 313 K; ALS

Hydrogen + Ethyl Acetate = 2Ethanol

By formula: H2 + C4H8O2 = 2C2H6O

Quantity Value Units Method Reference Comment
Δr-17.92 ± 0.13kcal/molCmWiberg, Crocker, et al., 1991liquid phase; ALS

Ketene + Ethanol = Ethyl Acetate

By formula: C2H2O + C2H6O = C4H8O2

Quantity Value Units Method Reference Comment
Δr-36.44kcal/molCmRice and Greenberg, 1934gas phase; ALS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Haas, Giblin, et al., 1998
Haas, G.W.; Giblin, D.E.; Gross, M.L., The Mechanism and Thermodynamics of Transesterification of Acetate-Ester Enolates in the Gas Phase, Int. J. Mass Spectrom. Ion Proc., 1998, 172, 1-2, 25, https://doi.org/10.1016/S0168-1176(97)83245-4 . [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Vilcu and Perisanu, 1980
Vilcu, R.; Perisanu, S., The ideal gas state enthalpies of formation of some monomers, Rev. Roum. Chim., 1980, 25, 619-624. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Guthrie and Pike, 1987
Guthrie, J.P.; Pike, D.C., Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazole on esters. The question of concerted mechanisms for acyl transfers, Can. J. Chem., 1987, 65, 1951-1969. [all data]

Wadso, 1958
Wadso, I., The heats of hydrolysis of some alkyl acetates, Acta Chem. Scand., 1958, 12, 630-633. [all data]

Halford and Brundage, 1942
Halford, J.O.; Brundage, D., The vapor phase esterification equilibrium, J. Am. Chem. Soc., 1942, 64, 36-40. [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References