Ethyl Acetate

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-114.86 ± 0.19kcal/molCmWiberg, Crocker, et al., 1991ALS
Δfliquid-114.69 ± 0.11kcal/molCmWiberg and Waldron, 1991Heat of hydrolysis; ALS
Δfliquid-114.44 ± 0.17kcal/molCcbFenwick, Harrop, et al., 1978ALS
Δfliquid-115.20 ± 0.95kcal/molCcbButwill and Rockenfeller, 1970ALS
Quantity Value Units Method Reference Comment
Δcliquid-535.02 ± 0.11kcal/molCcbFenwick, Harrop, et al., 1978Corresponding Δfliquid = -114.44 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-534.27 ± 0.94kcal/molCcbButwill and Rockenfeller, 1970Corresponding Δfliquid = -115.19 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-539.1kcal/molCcbRoth and Muller, 1929Corresponding Δfliquid = -110.4 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-536.9kcal/molCcbGuinchant, 1918Corresponding Δfliquid = -112.6 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid62.00cal/mol*KN/AParks, Huffman, et al., 1933Extrapolation below 90 K, 62.80 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
40.378298.15Pintos, Bravo, et al., 1988DH
40.772298.32Zabransky, Hynek, et al., 1987T = 294 to 340 K. Unsmoothed experimental datum.; DH
40.464298.15Jimenez, Romani, et al., 1986DH
40.406298.15Baluja, Bravo, et al., 1985DH
40.54298.15Costas and Patterson, 1985T = 283.15, 298.15, 313.15 K.; DH
40.54298.15Costas and Patterson, 1985, 2DH
40.01298.15Fuchs, 1979DH
40.51298.1Roux, Perron, et al., 1978T = 283 to 313 K.; DH
40.349303.61Zhdanov, 1945T = 5 to 46°C. Value is unsmoothed experimental datum.; DH
37.69290.Kurnakov and Voskresenskaya, 1936DH
40.440293.6Parks, Huffman, et al., 1933T = 92 to 294 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil350.2 ± 0.2KAVGN/AAverage of 58 out of 72 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus190. ± 1.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple189.3KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple189.3KN/AParks, Huffman, et al., 1933, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc530. ± 20.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc38.31atmN/AAmbrose, Ellender, et al., 1981Uncertainty assigned by TRC = 0.0382 atm; Visual; TRC
Pc37.80atmN/AYoung, 1910Uncertainty assigned by TRC = 0.8000 atm; TRC
Pc38.013atmN/AYoung and Thomas, 1893Uncertainty assigned by TRC = 0.39 atm; TRC
Pc39.65atmN/ANadezhdin, 1887Uncertainty assigned by TRC = 2.0000 atm; TRC
Pc42.24atmN/ASajots, 1879Uncertainty assigned by TRC = 4.000 atm; TRC
Quantity Value Units Method Reference Comment
ρc3.492mol/lN/AYoung, 1910Uncertainty assigned by TRC = 0.06 mol/l; TRC
ρc3.497mol/lN/AYoung and Thomas, 1893Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc3.397mol/lN/ANadezhdin, 1887Uncertainty assigned by TRC = 0.06 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap8.3 ± 0.4kcal/molAVGN/AAverage of 9 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
7.634350.3N/AMajer and Svoboda, 1985 
8.15315.N/AHernández and Ortega, 1997Based on data from 300. to 390. K.; AC
8.53303.AStephenson and Malanowski, 1987Based on data from 288. to 351. K. See also Polák and Mertl, 1965 and Dykyj, 1971.; AC
8.77286.N/AAmbrose, Ellender, et al., 1981, 2Based on data from 271. to 373. K. See also Boublik, Fried, et al., 1984.; AC
8.27 ± 0.02313.CSvoboda, Uchytilová, et al., 1980AC
7.50 ± 0.02343.CSvoboda, Uchytilová, et al., 1980AC
8.08 ± 0.02326.CSvoboda, Veselý, et al., 1977AC
7.98 ± 0.02331.CSvoboda, Veselý, et al., 1977AC
7.74 ± 0.02344.CSvoboda, Veselý, et al., 1977AC
7.62 ± 0.02351.CSvoboda, Veselý, et al., 1977AC
7.41 ± 0.02363.CSvoboda, Veselý, et al., 1977AC
8.13320.N/AConnett, Counsell, et al., 1976AC
7.62350.N/AConnett, Counsell, et al., 1976AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
298. to 363.12.970.2982523.2Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
288.73 to 348.984.222381245.702-55.189Polák and Mertl, 1965Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.505189.3Acree, 1991AC
2.5050189.3Parks, Huffman, et al., 1933DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
13.21189.3Parks, Huffman, et al., 1933DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H9Si+ + Ethyl Acetate = (C3H9Si+ • Ethyl Acetate)

By formula: C3H9Si+ + C4H8O2 = (C3H9Si+ • C4H8O2)

Quantity Value Units Method Reference Comment
Δr48.7kcal/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr31.4cal/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
34.0468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + Ethyl Acetate = (C3H9Sn+ • Ethyl Acetate)

By formula: C3H9Sn+ + C4H8O2 = (C3H9Sn+ • C4H8O2)

Quantity Value Units Method Reference Comment
Δr40.2kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr33.cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
22.9525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C4H7O2- + Hydrogen cation = Ethyl Acetate

By formula: C4H7O2- + H+ = C4H8O2

Quantity Value Units Method Reference Comment
Δr371.7 ± 4.1kcal/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B
Δr368.9 ± 1.2kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr365.0 ± 4.0kcal/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria; B

C4H9O2+ + Ethyl Acetate = (C4H9O2+ • Ethyl Acetate)

By formula: C4H9O2+ + C4H8O2 = (C4H9O2+ • C4H8O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.2kcal/molPHPMSSzulejko and McMahon, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr34.6cal/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M

Nitric oxide anion + Ethyl Acetate = (Nitric oxide anion • Ethyl Acetate)

By formula: NO- + C4H8O2 = (NO- • C4H8O2)

Quantity Value Units Method Reference Comment
Δr41.5kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Acetic acid ethenyl ester + Hydrogen = Ethyl Acetate

By formula: C4H6O2 + H2 = C4H8O2

Quantity Value Units Method Reference Comment
Δr-30.9 ± 1.1kcal/molChydVilcu and Perisanu, 1980liquid phase; ALS
Δr-31.12 ± 0.06kcal/molChydDolliver, Gresham, et al., 1938gas phase; At 355 °K; ALS

Acetylimidazole diethyl acetal + Water = Ethyl Acetate + 1H-Imidazole + Ethanol

By formula: C9H16N2O2 + H2O = C4H8O2 + C3H4N2 + C2H6O

Quantity Value Units Method Reference Comment
Δr-10.68 ± 0.16kcal/molCmGuthrie and Pike, 1987liquid phase; Heat of hydrolysis; ALS

Ethyl Acetate + Water = Ethanol + Acetic acid

By formula: C4H8O2 + H2O = C2H6O + C2H4O2

Quantity Value Units Method Reference Comment
Δr0.89 ± 0.04kcal/molCmWadso, 1958liquid phase; Heat of hydrolysis; ALS

Ethanol + Acetic acid = Ethyl Acetate + Water

By formula: C2H6O + C2H4O2 = C4H8O2 + H2O

Quantity Value Units Method Reference Comment
Δr3.97 ± 0.08kcal/molEqkHalford and Brundage, 1942gas phase; At 313 K; ALS

Hydrogen + Ethyl Acetate = 2Ethanol

By formula: H2 + C4H8O2 = 2C2H6O

Quantity Value Units Method Reference Comment
Δr-17.92 ± 0.13kcal/molCmWiberg, Crocker, et al., 1991liquid phase; ALS

Ketene + Ethanol = Ethyl Acetate

By formula: C2H2O + C2H6O = C4H8O2

Quantity Value Units Method Reference Comment
Δr-36.44kcal/molCmRice and Greenberg, 1934gas phase; ALS

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Wiberg and Waldron, 1991
Wiberg, K.B.; Waldron, R.F., Lactones. 2. Enthalpies of hydrolysis, reduction, and formation of the C4-C13 monocyclic lactones. strain energies and conformations, J. Am. Chem. Soc., 1991, 113, 7697-7705. [all data]

Fenwick, Harrop, et al., 1978
Fenwick, J.O.; Harrop, D.; Head, A.J., Thermodynamic properties of organic oxygen compounds. 46. Enthalpies of formation of ethyl acetate and 1-hexanoix acid, J. Chem. Thermodyn., 1978, 10, 687-690. [all data]

Butwill and Rockenfeller, 1970
Butwill, M.E.; Rockenfeller, J.D., Heats of combustion and formation of ethyl acetate and isopropyl acetate, Thermochim. Acta, 1970, 1, 289-295. [all data]

Roth and Muller, 1929
Roth, W.A.; Muller, Fr., Die Zersetzungswarme der Stickstoffwasserstoffsaure, Ber., 1929, 62, 1188-1194. [all data]

Guinchant, 1918
Guinchant, M.J., Etude sur la fonction acide dans les derives metheniques et methiniques, Ann. Chem., 1918, 10, 30-84. [all data]

Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]

Pintos, Bravo, et al., 1988
Pintos, M.; Bravo, R.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Can. J. Chem., 1988, 1179. [all data]

Zabransky, Hynek, et al., 1987
Zabransky, M.; Hynek, V.; Finkeova-Hastabova, J.; Vesely, F., Heat capacities of six liquid esters as a function of temperature, Coll. Czech. Chem. Comm., 1987, 52, 251-256. [all data]

Jimenez, Romani, et al., 1986
Jimenez, E.; Romani, L.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Molar excess heat capacities and volumes for mixtures of alkanoates with cyclohexane at 25°C, J. Solution Chem., 1986, 15(11), 879-890. [all data]

Baluja, Bravo, et al., 1985
Baluja, M.C.; Bravo, R.; Pintos, M.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Unusual dependence on concentration of the excess heat capacities of ester solutions in alkanes, Calorim. Anal. Therm., 1985, 16, 138-144. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Heat capacities of water + organic-solvent mixtures, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 2381-2398. [all data]

Costas and Patterson, 1985, 2
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Fuchs, 1979
Fuchs, R., Heat capacities of some liquid aliphatic, alicyclic, and aromatic esters at 298.15 K, J. Chem. Thermodyn., 1979, 11, 959-961. [all data]

Roux, Perron, et al., 1978
Roux, G.; Perron, G.; Desnoyers, J.E., The heat capacities and volumes of some low molecular weight amides, ketones, esters, and ethers in water over the whole solubility range, Can. J. Chem., 1978, 56, 2808-2814. [all data]

Zhdanov, 1945
Zhdanov, A.K., On the thermal capacity of some pure liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1945, 15, 895-902. [all data]

Kurnakov and Voskresenskaya, 1936
Kurnakov, N.S.; Voskresenskaya, N.K., Calorimetry of liquid binary systems, Izv. Akad. Nauk SSSR, Otdel. Mat. i Estestv. Nauk. Ser. Khim, 1936, 1936, 439-461. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Parks, Huffman, et al., 1933, 2
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen, J. Am. Chem. Soc., 1933, 55, 7, 2733, https://doi.org/10.1021/ja01334a016 . [all data]

Ambrose, Ellender, et al., 1981
Ambrose, D.; Ellender, J.H.; Gundry, H.A.; Lee, D.A.; Townsend, R., Thermodynamic properties of organic oxygen compounds. LI. The vapour pressures of some esters and fatty acids, J. Chem. Thermodyn., 1981, 13, 795. [all data]

Young, 1910
Young, S., The Internal Heat of Vaporization constants of thirty pure substances, Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]

Young and Thomas, 1893
Young, S.; Thomas, G.L., The vapour pressures, molecular volumes, and critical constants of ten of the lower esters, J. Chem. Soc., 1893, 63, 1191. [all data]

Nadezhdin, 1887
Nadezhdin, A., Rep. Phys., 1887, 23, 708. [all data]

Sajots, 1879
Sajots, W., Vapor Pressures of Saturated Vapors at High Temperatures., Beibl. Ann. Phys., 1879, 3, 741-3. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Hernández and Ortega, 1997
Hernández, Pablo; Ortega, Juan, Vapor-Liquid Equilibria and Densities for Ethyl Esters (Ethanoate to Butanoate) and Alkan-2-ol (C 3 -C 4 ) at 101.32 kPa, J. Chem. Eng. Data, 1997, 42, 6, 1090-1100, https://doi.org/10.1021/je970077b . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Polák and Mertl, 1965
Polák, J.; Mertl, I., Saturated vapour pressure of methyl acetate, ethyl acetate, n-propyl acetate, methyl propionate, and ethyl propionate, Collect. Czech. Chem. Commun., 1965, 30, 10, 3526-3528, https://doi.org/10.1135/cccc19653526 . [all data]

Dykyj, 1971
Dykyj, J., Petrochemia, 1971, 11, 2, 27. [all data]

Ambrose, Ellender, et al., 1981, 2
Ambrose, D.; Ellender, J.H.; Gundry, H.A.; Lee, D.A.; Townsend, R., Thermodynamic properties of organic oxygen compounds LI. The vapour pressures of some esters and fatty acids, The Journal of Chemical Thermodynamics, 1981, 13, 8, 795-802, https://doi.org/10.1016/0021-9614(81)90069-0 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Svoboda, Uchytilová, et al., 1980
Svoboda, Václav; Uchytilová, Vera; Majer, Vladimír; Pick, Jirí, Heats of vaporization of alkyl esters of formic, acetic and propionic acids, Collect. Czech. Chem. Commun., 1980, 45, 12, 3233-3240, https://doi.org/10.1135/cccc19803233 . [all data]

Svoboda, Veselý, et al., 1977
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Heats of vaporization of alkyl acetates and propionates, Collect. Czech. Chem. Commun., 1977, 42, 3, 943-951, https://doi.org/10.1135/cccc19770943 . [all data]

Connett, Counsell, et al., 1976
Connett, J.E.; Counsell, J.F.; Lee, D.A., Thermodynamic properties of organic oxygen compounds XLIV. Vapour heat capacities and enthalpies of vaporization of methyl acetate, ethyl acetate, and propyl acetate, The Journal of Chemical Thermodynamics, 1976, 8, 12, 1199-1203, https://doi.org/10.1016/0021-9614(76)90129-4 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Haas, Giblin, et al., 1998
Haas, G.W.; Giblin, D.E.; Gross, M.L., The Mechanism and Thermodynamics of Transesterification of Acetate-Ester Enolates in the Gas Phase, Int. J. Mass Spectrom. Ion Proc., 1998, 172, 1-2, 25, https://doi.org/10.1016/S0168-1176(97)83245-4 . [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Vilcu and Perisanu, 1980
Vilcu, R.; Perisanu, S., The ideal gas state enthalpies of formation of some monomers, Rev. Roum. Chim., 1980, 25, 619-624. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Guthrie and Pike, 1987
Guthrie, J.P.; Pike, D.C., Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazole on esters. The question of concerted mechanisms for acyl transfers, Can. J. Chem., 1987, 65, 1951-1969. [all data]

Wadso, 1958
Wadso, I., The heats of hydrolysis of some alkyl acetates, Acta Chem. Scand., 1958, 12, 630-633. [all data]

Halford and Brundage, 1942
Halford, J.O.; Brundage, D., The vapor phase esterification equilibrium, J. Am. Chem. Soc., 1942, 64, 36-40. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References