3,5,9-Undecatrien-2-one, 6,10-dimethyl-
- Formula: C13H20O
- Molecular weight: 192.2973
- IUPAC Standard InChIKey: JXJIQCXXJGRKRJ-UHFFFAOYSA-N
- CAS Registry Number: 141-10-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Stereoisomers:
- Other names: ψ-Ionone; Citrylideneacetone; Pseudoionone; 6,10-Dimethyl-3,5,9-undecatrien-2-one; 2,6-Dimethylundeca-2,6,8-triene-10-one; 2,6-Dimethyl hendeca-2,6,8-trien-10-one; 6,10-dimethylundeca-3,5,9-trien-2-one
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -213.4 ± 2.8 | kJ/mol | Ccb | Gerasimov, Gubareva, et al., 1985 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -7760.5 ± 2.8 | kJ/mol | Ccb | Gerasimov, Gubareva, et al., 1985 | Corresponding ΔfHºliquid = -213.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -7755.9 | kJ/mol | Ccb | Roth-Greifswald, 1911 | Heat of combustion corrected for pressure; Corresponding ΔfHºliquid = -218. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
382.7 | 297.85 | Baglay, Gurariy, et al., 1988 | T = 270 to 340 K. Unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: William E. Acree, Jr., James S. Chickos
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
67.6 ± 1.1 | 420. | Baglay, Gurariy, et al., 1988 | Based on data from 382. to 457. K. |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Coblentz Society, Inc.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View scan of original (hardcopy) spectrum.
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | INFRACORD |
Source reference | COBLENTZ NO. 3726 |
Date | Not specified, most likely prior to 1970 |
Name(s) | (3E,5E)-6,10-dimethyl-3,5,9-undecatrien-2-one PSEUDO-IONONE |
Instrument | Not specified, most likely a prism, grating, or hybrid spectrometer. |
Resolution | 4 |
Sampling procedure | TRANSMISSION |
Data processing | DIGITIZED BY NIST FROM HARD COPY |
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Chemical Concepts |
NIST MS number | 188004 |
Gas Chromatography
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | SE-30 | 100. | 1507.9 | Tudor, 1997 | 40. m/0.35 mm/0.35 μm |
Capillary | SE-30 | 100. | 1557.6 | Tudor, 1997 | 40. m/0.35 mm/0.35 μm |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | PEG-20M | 170. | 1976. | Gribanova, Kharitonov, et al., 1990 | N2; Column length: 50. m; Column diameter: 0.27 mm |
Capillary | PEG-20M | 170. | 2045. | Gribanova, Kharitonov, et al., 1990 | N2; Column length: 50. m; Column diameter: 0.27 mm |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 1527. | Gómez, Ledbetter, et al., 1993 | He, 4. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 50. C; Tend: 250. C |
Capillary | DB-5 | 1581. | Gómez, Ledbetter, et al., 1993 | He, 4. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tstart: 50. C; Tend: 250. C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-1 | 1550. | Buttery, Teranishi, et al., 1990 | He, 30. C @ 25. min, 4. K/min, 200. C @ 5. min; Column length: 60. m; Column diameter: 0.25 mm |
Capillary | DB-1 | 1556. | Habu, Flath, et al., 1985 | 3. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 50. C; Tend: 250. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | TR-5 MS | 1581. | Kurashov, Mitrukova, et al., 2014 | 15. m/0.25 mm/0.25 μm, Helium; Program: 35 0C (3 min) 2 0C/min -> 60 0C (3 min) 2 0C/min -> 80 0C (3 min) 4 0C/min -> 120 0C (3 min) 5 0C/min -> 150 0C (3 min) 15 0C/min -> 240 0C (10 min) |
Capillary | TR-5 MS | 1593. | Kurashov, Krylova, et al., 2013 | 15. m/0.25 mm/0.25 μm, Helium; Program: 35 0C (3 min) 2 0C/min -> 60 0C (3 min) 2 0C/min -> 80 0C (3 min) 4 0C/min -> 120 0C (3 min) 5 0C/min -> 150 0C (3 mion) 15 0C/min -> 240 0C (10 min) |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Carbowax 20M | 2008. | Kawakami and Kobayashi, 1991 | He, 60. C @ 4. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 180. C |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Gerasimov, Gubareva, et al., 1985
Gerasimov, P.A.; Gubareva, A.I.; Beregovykh, V.V.; Blokh, E.L.,
The Physicochemical properties of a ψ- and β-ionones,
Russ. J. Phys. Chem. (Engl. Transl.), 1985, 59, 1712-1713. [all data]
Roth-Greifswald, 1911
Roth-Greifswald, W.A.,
XVIII. Hauptversammlung der Deutschen Bunsen-Gesellschaft fur angewandte physikalische Chemie,
Z. Electrochem., 1911, 17, 789-840. [all data]
Baglay, Gurariy, et al., 1988
Baglay, A.K.; Gurariy, L.L.; Kuleshov, G.G.,
Physical properties of compounds used in vitamin synthesis,
J. Chem. Eng. Data, 1988, 33, 512-518. [all data]
Tudor, 1997
Tudor, E.,
Temperature dependence of the retention index for perfumery compounds on a SE-30 glass capillary column. I. Linear equations,
J. Chromatogr. A, 1997, 779, 1-2, 287-297, https://doi.org/10.1016/S0021-9673(97)00453-6
. [all data]
Gribanova, Kharitonov, et al., 1990
Gribanova, S.V.; Kharitonov, Yu.Ya.; Dzhabarov, D.N.; Rudenko, B.A.; Yanotovskii, M.T.,
Investigation of the gas-chromatographic behaviour of intermediate products of vitamin E synthesis and their structural analogs on various stationary phases for the identification of impurities by their retention indices,
Zh. Anal. Khim., 1990, 45, 8, 1561-1567. [all data]
Gómez, Ledbetter, et al., 1993
Gómez, E.; Ledbetter, C.A.; Hartsell, P.L.,
Volatile compounds in apricot, plum, and their interspecific hybrids,
J. Agric. Food Chem., 1993, 41, 10, 1669-1676, https://doi.org/10.1021/jf00034a029
. [all data]
Buttery, Teranishi, et al., 1990
Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh, J.G.,
Quantitative and sensory studies on tomato paste volatiles,
J. Agric. Food Chem., 1990, 38, 1, 336-340, https://doi.org/10.1021/jf00091a074
. [all data]
Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F.,
Volatile components of Rooibos tea (Aspalathus linearis),
J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024
. [all data]
Kurashov, Mitrukova, et al., 2014
Kurashov, E.A.; Mitrukova, G.G.; Krylova, Yu.V.,
Variations in the component composition of essential oil of Ceratophyllum demersum (Ceratophyllaceae) during vegetation (in press),
Plant Resources (Rastitel'nye Resursy), 2014, 1, 000-000. [all data]
Kurashov, Krylova, et al., 2013
Kurashov, E.A.; Krylova, Yu.V.; Mitrukova, G.G.,
Variations in component composition of essential oil of Potamogeton pusillus (Potamogetonaceae) dirong vegetation,
Plant Resources (Rastitel'nye Resursy), 2013, 000-000. [all data]
Kawakami and Kobayashi, 1991
Kawakami, M.; Kobayashi, A.,
Volatitle constituents of greem mate and roasted mate,
J. Agric. Food Chem., 1991, 39, 7, 1275-1279, https://doi.org/10.1021/jf00007a016
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.