Tungsten hexacarbonyl


Reaction thermochemistry data

Go To: Top, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Tungsten hexacarbonyl (solution) = C5O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) = C5O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr39.9 ± 1.6kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(solution) with PBu3(solution).; MS
Δr39.01kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of W(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.; MS

Tungsten hexacarbonyl (g) = C5O5W (g) + Carbon monoxide (g)

By formula: C6O6W (g) = C5O5W (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr46.0 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984The reaction enthalpy at 298 K relies on an activation energy of 44.50 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -211.3 ± 0.65 kcal/mol for the enthalpy of formation of W(CO)6(g); MS
Δr39.79kcal/molKinGCetini and Gambino, 1963Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(g) with CO(g) Cetini and Gambino, 1963. The results were quoted from Graham and Angelici, 1967.; MS

Tungsten hexacarbonyl (cr) = 6Carbon monoxide (g) + tungsten (cr)

By formula: C6O6W (cr) = 6CO (g) + W (cr)

Quantity Value Units Method Reference Comment
Δr71.4 ± 1.1kcal/molTD-HFC, HAL-HFCAl-Takhin, Connor, et al., 1984The reaction enthalpy corresponds to the TD experiments and leads to -229.9 ± 1.1 kcal/mol for the enthalpy of formation. The value -960±3 was recommended by the authors Al-Takhin, Connor, et al., 1984. Other values for the enthalpy of sublimation have been reported: 17.5 ± 0.2 kcal/mol Adedeji, Brown, et al., 1975, 17.7 ± 1.0 kcal/mol Hieber and Romberg, 1935, 16.7 ± 1.0 kcal/mol Rezukhina and Shvyrev, 1952, and 18.9 ± 0.26 kcal/mol Daamen, Ernsting, et al., 1979 Boxhoorn, Ernsting, et al., 1980. See also Pilcher, Ware, et al., 1975; MS
Δr70.77 ± 0.43kcal/molTD-HZCBarnes, Pilcher, et al., 1974Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.; MS

Tungsten hexacarbonyl (cr) + 1,3-Diazine (l) = C10H5NO5W (cr) + Carbon monoxide (g)

By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)

Quantity Value Units Method Reference Comment
Δr8.27kcal/molN/ANakashima and Adamson, 1982The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 6.55 ± 0.69 kcal/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 1.9 kcal/mol, respectively Nakashima and Adamson, 1982.; MS

C9H9N3O3W (cr) = 0.5Tungsten hexacarbonyl (g) + 0.5tungsten (cr) + 3Acetonitrile (g)

By formula: C9H9N3O3W (cr) = 0.5C6O6W (g) + 0.5W (cr) + 3C2H3N (g)

Quantity Value Units Method Reference Comment
Δr46.6kcal/molTD-HFCAdedeji, Connor, et al., 1978The value for the reaction enthalpy corresponds to the thermal decomposition experiments and leads to -99.2 kcal/mol for the enthalpy of formation of W(CO)3(MeCN)3(cr). The value -405.0±12.0 was recommended by the authors Adedeji, Connor, et al., 1978; MS

Tungsten hexacarbonyl (solution) + 1,3-Diazine (solution) = C10H5NO5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr6.55 ± 0.69kcal/molPCNakashima and Adamson, 1982solvent: Cyclohexane; MS
Δr5.95 ± 0.69kcal/molPCNakashima and Adamson, 1982solvent: Benzene; MS
Δr4.40 ± 0.1kcal/molPCNakashima and Adamson, 1982solvent: Tetrahydrofuran; MS

Tungsten hexacarbonyl (solution) + Heptane (solution) = C12H16O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C7H16 (solution) = C12H16O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.60 ± 0.41kcal/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS

Hydrogen anion + Tungsten hexacarbonyl = (Hydrogen anion • Tungsten hexacarbonyl)

By formula: H- + C6O6W = (H- • C6O6W)

Quantity Value Units Method Reference Comment
Δr44.0 ± 4.0kcal/molN/ALane and Squires, 1988gas phase; Hydride affinity between CH2=O and PhCH=O; B

C8H6N2O4W (cr) + 2Carbon monoxide (g) = Tungsten hexacarbonyl (g) + 2Acetonitrile (g)

By formula: C8H6N2O4W (cr) + 2CO (g) = C6O6W (g) + 2C2H3N (g)

Quantity Value Units Method Reference Comment
Δr17.3 ± 0.91kcal/molDSCBleijerveld and Vrieze, 1976Please also see Bleyerveld, Höhle, et al., 1975.; MS

C9H9N3O3W (cr) + 3Carbon monoxide (g) = Tungsten hexacarbonyl (g) + 3Acetonitrile (g)

By formula: C9H9N3O3W (cr) + 3CO (g) = C6O6W (g) + 3C2H3N (g)

Quantity Value Units Method Reference Comment
Δr17.4 ± 1.2kcal/molDSCBleijerveld and Vrieze, 1976Please also see Bleyerveld, Höhle, et al., 1975.; MS

C7H3NO5W (cr) + Carbon monoxide (g) = Tungsten hexacarbonyl (g) + Acetonitrile (g)

By formula: C7H3NO5W (cr) + CO (g) = C6O6W (g) + C2H3N (g)

Quantity Value Units Method Reference Comment
Δr16.9 ± 0.60kcal/molDSCBleijerveld and Vrieze, 1976Please also see Bleyerveld, Höhle, et al., 1975.; MS

Tetrahydrofuran (solution) + Tungsten hexacarbonyl (solution) = C9H8O6W (solution) + Carbon monoxide (solution)

By formula: C4H8O (solution) + C6O6W (solution) = C9H8O6W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr14.5 ± 1.0kcal/molPCNakashima and Adamson, 1982solvent: Tetrahydrofuran; MS

C10H5NO5W (cr) + Carbon monoxide (g) = Tungsten hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5NO5W (cr) + CO (g) = C6O6W (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr20. ± 2.4kcal/molDSCDaamen, van der Poel, et al., 1979Please also see Meester, Vriends, et al., 1976.; MS

Tungsten hexacarbonyl (solution) + Acetone (solution) = C8H6O6W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C3H6O (solution) = C8H6O6W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr17.9 ± 1.4kcal/molPCNakashima and Adamson, 1982solvent: Acetone; MS

Tungsten hexacarbonyl (cr) + 31,3-Diazine (g) = C18H15N3O3W (g) + 3Carbon monoxide (g)

By formula: C6O6W (cr) + 3C4H4N2 (g) = C18H15N3O3W (g) + 3CO (g)

Quantity Value Units Method Reference Comment
Δr-13.1 ± 2.0kcal/molHFCAdedeji, Connor, et al., 1978MS

Tungsten hexacarbonyl (g) = C3O3W (g) + 3Carbon monoxide (g)

By formula: C6O6W (g) = C3O3W (g) + 3CO (g)

Quantity Value Units Method Reference Comment
Δr111. ± 10.kcal/molMBPSVenkataraman, Hou, et al., 1990MS

Mass spectrum (electron ionization)

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 62145

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Werner and Prinz, 1966
Werner, H.; Prinz, R., Chem. Ber., 1966, 99, 3582. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Cetini and Gambino, 1963
Cetini, G.; Gambino, O., Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 1197. [all data]

Al-Takhin, Connor, et al., 1984
Al-Takhin, G.; Connor, J.A.; Pilcher, G.; Skinner, H.A., J. Organomet. Chem., 1984, 265, 263. [all data]

Adedeji, Brown, et al., 1975
Adedeji, F.A.; Brown, D.L.S.; Connor, J.A.; Leung, M.; Paz-Andrade, I.M.; Skinner, H.A., J. Organometal. Chem., 1975, 97, 221. [all data]

Hieber and Romberg, 1935
Hieber, W.; Romberg, E., Z. Anorg. Allg. Chem., 1935, 221, 321. [all data]

Rezukhina and Shvyrev, 1952
Rezukhina, T.N.; Shvyrev, V.V., Vestn. Moskov. Univ., 1952, 7, 41. [all data]

Daamen, Ernsting, et al., 1979
Daamen, H.; Ernsting, J.M.; Oskam, A., Thermochim. Acta, 1979, 33, 217. [all data]

Boxhoorn, Ernsting, et al., 1980
Boxhoorn, G.; Ernsting, J.M.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1980, 42, 315. [all data]

Pilcher, Ware, et al., 1975
Pilcher, G.; Ware, M.J.; Pittam, D.A., J. Less-Common Met., 1975, 42, 223. [all data]

Barnes, Pilcher, et al., 1974
Barnes, D.S.; Pilcher, G.; Pittam, D.A.; Skinner, H.A.; Todd, D., J. Less-Common Met., 1974, 38, 53. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Tel'noi and Rabinovich, 1977
Tel'noi, V.I.; Rabinovich, I.B., Russ. Chem. Rev., 1977, 46, 689. [all data]

Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W., J. Phys. Chem., 1982, 86, 2905. [all data]

Adedeji, Connor, et al., 1978
Adedeji, F.A.; Connor, J.A.; Demain, C.P.; Martinho Simões, J.A.; Skinner, H.A.; Zafarani- Moattar, M.T., J. Organometal. Chem., 1978, 149, 333. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Lane and Squires, 1988
Lane, K.R.; Squires, R.R., Hydride Transfer to Transition Metal Carbonyls in the Gas Phase. Formation and Relative Stabilities of Anionic Formyl Complexes, Polyhedron, 1988, 7, 16-17, 1609, https://doi.org/10.1016/S0277-5387(00)81786-6 . [all data]

Bleijerveld and Vrieze, 1976
Bleijerveld, R.H.T.; Vrieze, K., Inorg. Chim. Acta, 1976, 19, 195. [all data]

Bleyerveld, Höhle, et al., 1975
Bleyerveld, R.H.T.; Höhle, Th.; Vrieze, K., J. Organometal. Chem., 1975, 281, 284. [all data]

Daamen, van der Poel, et al., 1979
Daamen, H.; van der Poel, H.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1979, 34, 69. [all data]

Meester, Vriends, et al., 1976
Meester, M.A.M.; Vriends, R.C.J.; Stufkens, D.J.; Vrieze, K., Inorg. Chim. Acta, 1976, 19, 95. [all data]

Venkataraman, Hou, et al., 1990
Venkataraman, B.; Hou, H.; Zhang, Z.; Chen, S.; Bandukwalla, G.; Vernon, M., J. Chem. Phys., 1990, 92, 5338. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), References