1-Naphthalenamine
- Formula: C10H9N
- Molecular weight: 143.1852
- IUPAC Standard InChIKey: RUFPHBVGCFYCNW-UHFFFAOYSA-N
- CAS Registry Number: 134-32-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Other names: 1-Naphthylamine; α-Aminonaphthalene; α-Naphthylamine; C.I. Azoic Diazo Component 114; C.I. 37265; Fast Garnet Base B; Naphthalidam; Naphthalidine; 1-Aminonaphthalene; 1-Naphthalamine; Alfanaftilamina; Alfa-naftyloamina; 1-Aminonaftalen; Fast garnet B base; α-Naftalamin; 1-Naftilamina; α-Naftylamin; 1-Naftylamin; 1-Naftylamine; 1-Naphthylamin; Rcra waste number U167; UN 2077; Naphthalen-1-ylamine
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 92.5 | kJ/mol | Ccb | Pushin, 1954 | Author's hf298_condensed=19.6 kcal/mol |
ΔfH°solid | 87.0 | kJ/mol | Ccb | Schmidt and Becker, 1933 | |
ΔfH°solid | 91.6 | kJ/mol | Ccb | Lemoult, 1907 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -5285.9 ± 5.3 | kJ/mol | Ccb | Balcan, Arzik, et al., 1996 | |
ΔcH°solid | -5314. | kJ/mol | Ccb | Pushin, 1954 | Author's hf298_condensed=19.6 kcal/mol |
ΔcH°solid | -5308.49 | kJ/mol | Ccb | Schmidt and Becker, 1933 | |
ΔcH°solid | -5289.0 ± 5.4 | kJ/mol | Ccb | Milone and Rossignoli, 1932 | Reanalyzed by Cox and Pilcher, 1970, Original value = -5294.22 kJ/mol |
ΔcH°solid | -5312.8 | kJ/mol | Ccb | Lemoult, 1907 |
Phase change data
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 574.0 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 573.15 | K | N/A | Stillmann and Swain, 1899 | Uncertainty assigned by TRC = 2. K; TRC |
Tboil | 573.95 | K | N/A | Perkin, 1896 | Uncertainty assigned by TRC = 1.5 K; TRC |
Tboil | 512.1 | K | N/A | Hofmann, 1844 | Uncertainty assigned by TRC = 27.77 K; Identity uncertain. Name given was leucol. Analysis corresponds to C10H9N. Extracted from coal naphtha along with aniline. May be mixture with aniline.; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 322. ± 2. | K | AVG | N/A | Average of 16 out of 17 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 73.3 ± 0.4 | kJ/mol | GS | Verevkin, Georgieva, et al., 2007 | Based on data from 323. to 353. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 88.1 ± 0.4 | kJ/mol | GS | Verevkin, Georgieva, et al., 2007 | Based on data from 290. to 320. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
63.6 | 392. | A | Stephenson and Malanowski, 1987 | Based on data from 377. to 574. K. See also Stull, 1947.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
377.5 to 573.9 | 5.00643 | 2685.958 | -36.72 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
15.53 | 323.2 | Acree, 1991 | AC |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Sadtler Research Labs Under US-EPA Contract |
State | gas |
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-8709 |
NIST MS number | 228184 |
UV/Visible spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Dufraisse, Etienne, et al., 1953 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 1011 |
Instrument | n.i.g. |
Melting point | 49.2 |
Boiling point | 300.8 |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pushin, 1954
Pushin, N.A.,
Heats of combustion and heats of formation of isomeric organic compounds,
Bull. Soc. Chim. Belgrade, 1954, 19, 531-547. [all data]
Schmidt and Becker, 1933
Schmidt, V.A.; Becker, F.,
Die Bildungswarme von Nitrocellulofen, Nitroglycerin und anderen widuigen Beltandteilen von Treibmitteln,
Z. Gesamte Schiess Sprengstoffwes., 1933, 33, 280-282. [all data]
Lemoult, 1907
Lemoult, M.P.,
Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques,
Ann. Chim. Phys., 1907, 12, 395-432. [all data]
Balcan, Arzik, et al., 1996
Balcan, M.; Arzik, S.; Altunata, T.,
The determination of the heats of combustion and the resonance energies of some substituted naphthalenes,
Thermochim. Acta, 1996, 278, 49-56. [all data]
Milone and Rossignoli, 1932
Milone, M.; Rossignoli, P.,
Sul calore di combustione di alcune miscele di composti organici,
Gazz. Chim. Ital., 1932, 62, 644-655. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Stillmann and Swain, 1899
Stillmann, J.M.; Swain, R.E.,
The melting heat of naphthylamine and diphenylamine in relation to their lowering of molecular freezing point,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1899, 29, 705. [all data]
Perkin, 1896
Perkin, W.H.,
LXIX. On Magnetic Rotatory Power, especially of Aromatic Compounds,
J. Chem. Soc., 1896, 69, 1025-1257. [all data]
Hofmann, 1844
Hofmann, A.W.,
A Chemical Investigation of the Organic Bases Contained in Coal Gas Naphtha,
Philos. Mag., 1844, 24, 115. [all data]
Verevkin, Georgieva, et al., 2007
Verevkin, Sergey P.; Georgieva, Miglena; Melkhanova, Svetlana V.,
Vapor Pressures and Phase Transitions of a Series of the Aminonaphthalenes,
J. Chem. Eng. Data, 2007, 52, 1, 286-290, https://doi.org/10.1021/je060394v
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Dufraisse, Etienne, et al., 1953
Dufraisse, C.; Etienne, A.; Rutimeyer, B.,
Le meso-aminonaphtacene, sa constitution et quelques derives,
Compt. Rend., 1953, 237, 1601-1604. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
Tboil Boiling point Tfus Fusion (melting) point ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.