lead sulphide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas131.80kJ/molReviewChase, 1998Data last reviewed in June, 1973
Quantity Value Units Method Reference Comment
gas,1 bar251.41J/mol*KReviewChase, 1998Data last reviewed in June, 1973

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 2000. to 6000.
A 77.88139
B -29.77217
C 7.546932
D -0.510226
E -25.06680
F 68.59375
G 310.5700
H 131.7960
ReferenceChase, 1998
Comment Data last reviewed in June, 1973

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-84.06kJ/molReviewChase, 1998Data last reviewed in June, 1973
Quantity Value Units Method Reference Comment
liquid,1 bar100.79J/mol*KReviewChase, 1998Data last reviewed in June, 1973
Quantity Value Units Method Reference Comment
Δfsolid-98.32kJ/molReviewChase, 1998Data last reviewed in June, 1973
Quantity Value Units Method Reference Comment
solid91.34J/mol*KReviewChase, 1998Data last reviewed in June, 1973

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 1386.5 to 2000.
A 66.94400
B -7.464048×10-8
C 3.789779×10-8
D -6.666954×10-9
E -1.003106×10-8
F -112.7914
G 165.1312
H -84.06409
ReferenceChase, 1998
Comment Data last reviewed in June, 1973

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1386.5
A 47.38087
B 7.550530
C 2.008094
D -0.700460
E -0.031834
F -112.9115
G 146.1605
H -98.32400
ReferenceChase, 1998
Comment Data last reviewed in June, 1973

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for (208)Pb32S
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F 47770 370 H (7.8)        F ← X R 47729.5 1 H
missing citation
E (0+) (34000) 2          E ← X 
missing citation
D 1 29653.2 297.83 Z 1.365  0.10160 3 0.00064    2.447 D ← X 4 R 29587.4 Z
Rochester and Howell, 1935; Barrow, Fry, et al., 1963
C' (1) 25024.4 283.95 H 1.171        C' ← X R 24952.3 H
Rochester and Howell, 1935
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C (0+) 23212.9 303.93 H 1.436        C ← X R 23150.7 H
Rochester and Howell, 1935
B 1 21847.4 282.17 H 0.856  0.09992 3 0.000602    2.467 B ← X 4 R 21774.5 H
missing citation; Barrow, Fry, et al., 1963
A 0+ 18853.0 260.83 Z 0.363  0.09634 3 0.000262    2.513 A ← X 4 R 18768.9 Z
missing citation; Barrow, Fry, et al., 1963
a 1 14892.9 285.9 H (0.88)  0.09267 0.000374    2.562 a ← X 4 R 14821.9 Z
Barrow, Fry, et al., 1963
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X 1Σ+ 0 429.40 Z 1.30  0.11631868 5 3 0.00043509 6  3.415E-8 1.3E-10 2.286863 7  
Marino, Guerin, et al., 1974
Rotation sp. 8
Hoeft, Lovas, et al., 1969; Tiemann, Stieda, et al., 1975

Notes

1Observed value. Te, ωe, ωexe represent only v'=1,2,...; the v'=0 bands are displaced by ~12 cm-1 to lower energies owing to a perturbation.
2Unclassified bands in the region 3100 - 2750 Å (32200 - 36400 cm-1).
3RKR potential functions Nair, Singh, et al., 1965.
4Also observed as laser-excited emission in Ne, Ar, Kr, SF6 matrices Teichman and Nixon, 1975. Lifetimes in solid Ar have been measured for a,A,B Teichman and Nixon, 1975: τ(a)=260 μs, τ(A)=0.95 μs, τ(B)=1.8 μs.
5Rotational constants for 208Pb32S; Be values for other isotopes and adiabatic corrections Tiemann, Stieda, et al., 1975.
6αv= -5.31E-7(v+1/2)2 - 5.0E-9(v+1/2)3.
7Vibration sp. 10
8Dipole moment of 208Pb32S, μel(v=0) = 3.59 D Hoeft, Lovas, et al., 1969, from Stark effect of rotation spectrum Hoeft, Lovas, et al., 1969. A somewhat different value, μel(v=0)= 4.02 D Murty and Curl, 1969, is given by Murty and Curl, 1969. gJ = -0.06422 Tiemann, Stieda, et al., 1975 [Honerjager and Tischer, quoted in Tiemann, Stieda, et al., 1975].
9Thermochemical value (mass-spectrometry Colin and Drowart, 1962), revised Uy and Drowart, 1969. There appears to be a convergence of the E → X bands near 2715 Å Vago and Barrow, 1947. If it is assumed that this limit corresponds to 3P1 + 3P1 one finds D00 = 3.54 eV Barrow, Fry, et al., 1963.
10In Ar matrix at 12 K. Teichman and Nixon, 1975 have also observed the Raman spectrum of the PbS fundamental in solid argon.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Rochester and Howell, 1935
Rochester, G.D.; Howell, H.G., The vibrational analysis of the absorption spectrum of lead sulphide, Proc. R. Soc. London A, 1935, 148, 157. [all data]

Barrow, Fry, et al., 1963
Barrow, R.F.; Fry, P.W.; Le Bargy, R.C., Rotational analysis of bands of the absorption spectrum of PbS, Proc. Phys. Soc. London, 1963, 81, 697. [all data]

Marino, Guerin, et al., 1974
Marino, C.P.; Guerin, J.D.; Nixon, E.R., Infrared spectra of some matrix-isolated germanium, tin, and lead chalcogenides, J. Mol. Spectrosc., 1974, 51, 160. [all data]

Hoeft, Lovas, et al., 1969
Hoeft, J.; Lovas, F.J.; Tiemann, E.; Tischer, R.; Torring, T., Elektrisches Dipolmoment und Mikrowellenrotationsspektrum von SnO, SnS, PbO und PbS, Z. Naturforsch. A, 1969, 24, 1222. [all data]

Tiemann, Stieda, et al., 1975
Tiemann, E.; Stieda, W.U.; Torring, T.; Hoeft, J., Adiabatische Korrektur der Born-Oppenheimer-Naherung beim PbS, Z. Naturforsch. A, 1975, 30, 1606. [all data]

Nair, Singh, et al., 1965
Nair, K.P.R.; Singh, R.B.; Rai, D.K., Potential-energy curves and dissociation energies of oxides and sulfides of group IV A elements, J. Chem. Phys., 1965, 43, 3570. [all data]

Teichman and Nixon, 1975
Teichman, R.A., III; Nixon, E.R., The A → X emission spectra of PbS and PbSe in neon matrices: enhanced emission from isotopes and matrix sites, J. Mol. Spectrosc., 1975, 57, 14. [all data]

Murty and Curl, 1969
Murty, A.N.; Curl, R.F., Jr., Dipole moments of the sulfides of Pb, Sn, and Si from Stark effect measurements, J. Mol. Spectrosc., 1969, 30, 102. [all data]

Colin and Drowart, 1962
Colin, R.; Drowart, J., Thermodynamic study of tin sulfide and lead sulfide using a mass spectrometer, J. Chem. Phys., 1962, 37, 1120. [all data]

Uy and Drowart, 1969
Uy, O.M.; Drowart, J., Mass spectrometric determination of the dissociation energies of the molecules BiO, BiS, BiSe and BiTe, J. Chem. Soc. Faraday Trans., 1969, 65, 3221. [all data]

Vago and Barrow, 1947
Vago, E.E.; Barrow, R.F., Ultra-violet absorption band-systems of PbO, PbS, PbSe and PbTe, Proc. Phys. Soc. London, 1947, 59, 449. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, References