Pyrene
- Formula: C16H10
- Molecular weight: 202.2506
- IUPAC Standard InChIKey: BBEAQIROQSPTKN-UHFFFAOYSA-N
- CAS Registry Number: 129-00-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: β-Pyrene; Benzo[def]phenanthrene; Pyren; Coal tar pitch volatiles:pyrene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 53.90 ± 0.60 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 53.94 ± 0.31 | kcal/mol | Ccr | Smith, Stewart, et al., 1980 | ALS |
ΔfH°gas | 51.36 | kcal/mol | N/A | Westrum and Wong, 1967 | Value computed using ΔfHsolid° value of 114.7±0.4 kj/mol from Westrum and Wong, 1967 and ΔsubH° value of 100.2 kj/mol from Smith, Stewart, et al., 1980.; DRB |
ΔfH°gas | 51.36 | kcal/mol | N/A | Richardson and Parks, 1939 | Value computed using ΔfHsolid° value of 114.7±3.6 kj/mol from Richardson and Parks, 1939 and ΔsubH° value of 100.2 kj/mol from Smith, Stewart, et al., 1980.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.632 | 50. | Dorofeeva O.V., 1988 | These functions are also reproduced in the reference book [ Frenkel M., 1994]. Recommended entropy and heat capacity values are in close agreement with other statistically calculated values [ Smith N.K., 1980] at T=400-500 K. The disagreement increases up to 2 J/mol*K for T=200 and 600 K.; GT |
15.01 | 100. | ||
22.47 | 150. | ||
31.047 | 200. | ||
44.304 | 273.15 | ||
48.80 ± 0.24 | 298.15 | ||
49.135 | 300. | ||
65.856 | 400. | ||
79.730 | 500. | ||
90.791 | 600. | ||
99.603 | 700. | ||
106.71 | 800. | ||
112.54 | 900. | ||
117.37 | 1000. | ||
121.41 | 1100. | ||
124.82 | 1200. | ||
127.72 | 1300. | ||
130.19 | 1400. | ||
132.32 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 29.92 ± 0.55 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°solid | 29.99 ± 0.30 | kcal/mol | Ccr | Smith, Stewart, et al., 1980 | ALS |
ΔfH°solid | 27.41 ± 0.09 | kcal/mol | Ccr | Westrum and Wong, 1967 | ALS |
ΔfH°solid | 27.42 ± 0.85 | kcal/mol | Ccb | Richardson and Parks, 1939 | Reanalyzed by Cox and Pilcher, 1970, Original value = 26.90 kcal/mol; see Richardson, 1939; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -1876.4 ± 0.24 | kcal/mol | Ccr | Smith, Stewart, et al., 1980 | Corresponding ΔfHºsolid = 29.97 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -1873.83 ± 0.09 | kcal/mol | Ccr | Westrum and Wong, 1967 | Corresponding ΔfHºsolid = 27.44 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -1873.81 ± 0.84 | kcal/mol | Ccb | Richardson and Parks, 1939 | Reanalyzed by Cox and Pilcher, 1970, Original value = -1872.97 kcal/mol; see Richardson, 1939; Corresponding ΔfHºsolid = 27.42 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 53.750 | cal/mol*K | N/A | Wong and Westrum, 1971 | DH |
S°solid,1 bar | 51.41 | cal/mol*K | N/A | Jacobs and Parks, 1934 | Extrapolation below 90 K, 59.79 J/mol*K. Hump in Cp curve around 116 K, probably 2nd order transition. H = 100 J/mol.; DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
54.818 | 298.15 | Smith, Stewart, et al., 1980 | DH |
54.900 | 298.15 | Wong and Westrum, 1971 | T = 5 to 484 K.; DH |
54.410 | 291.1 | Jacobs and Parks, 1934 | T = 94 to 292 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 424. ± 3. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 423.81 | K | N/A | Wong and Westrum, 1971, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 22.1 ± 0.26 | kcal/mol | CGC | Hanshaw, Nutt, et al., 2008 | AC |
ΔvapH° | 20.8 ± 0.31 | kcal/mol | GC | Teodorescu, Barhala, et al., 2006 | Based on data from 423. to 493. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 24.98 | kcal/mol | ME | Siddiqi, Siddiqui, et al., 2009 | Based on data from 341. to 418. K.; AC |
ΔsubH° | 23.97 ± 0.24 | kcal/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔsubH° | 23.5 ± 0.24 | kcal/mol | DSC | Rojas and Orozco, 2003 | AC |
ΔsubH° | 23.95 ± 0.1 | kcal/mol | V | Smith, Stewart, et al., 1980 | ALS |
ΔsubH° | 23.95 | kcal/mol | N/A | Smith, Stewart, et al., 1980 | DRB |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
18.8 | 398. | GC | Hinckley, Bidleman, et al., 1990 | Based on data from 343. to 453. K.; AC |
18. | 428. | N/A | Sasse, Jose, et al., 1988 | Based on data from 413. to 467. K.; AC |
17. | 528. | A | Stephenson and Malanowski, 1987 | Based on data from 513. to 668. K. See also Tsypikina and Ya, 1955.; AC |
18.3 | 440. | N/A | Smith, Stewart, et al., 1980 | Based on data from 398. to 458. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
473.6 to 667.9 | 2.68142 | 1086.824 | -262.849 | Tsypkina, 1955 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
24.69 ± 0.50 | 380. | ME | Siddiqi, Siddiqui, et al., 2009 | Based on data from 341. to 418. K.; AC |
24.6 ± 1.6 | 353. | ME | Oja and Suuberg, 1998 | Based on data from 308. to 398. K.; AC |
23.4 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
23.97 ± 0.07 | 353. | PG | Sasse, Jose, et al., 1988 | Based on data from 369. to 383. K.; AC |
21.8 ± 0.1 | 303. | GS | Sonnefeld, Zoller, et al., 1983 | Based on data from 283. to 323. K.; AC |
23.95 ± 0.1 | 410. | IP | Smith, Stewart, et al., 1980 | Based on data from 398. to 423. K.; AC |
24.09 ± 0.36 | 348. to 419. | ME | Malaspina, Bardi, et al., 1974 | AC |
24.02 | 330. | ME | Hoyer and Peperle, 1958 | Based on data from 298. to 363. K.; AC |
22.500 | 344.75 | V | Bradley and Cleasby, 1953 | ALS |
23.92 ± 0.41 | 351. | ME | Inokuchi, Shiba, et al., 1952 | Based on data from 345. to 358. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
3.99 | 422.4 | DSC | Rojas and Orozco, 2003 | Based on data from 403. to 433. K.; AC |
4.149 | 423.8 | N/A | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.571 | 120.8 | Domalski and Hearing, 1996 | CAL |
9.792 | 423.8 |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.0691 | 120.8 | crystaline, II | crystaline, I | Wong and Westrum, 1971 | DH |
4.1501 | 423.81 | crystaline, I | liquid | Wong and Westrum, 1971 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.550 | 120.8 | crystaline, II | crystaline, I | Wong and Westrum, 1971 | DH |
9.792 | 423.81 | crystaline, I | liquid | Wong and Westrum, 1971 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C16H10+ + C16H10 = (C16H10+ • C16H10)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28. | cal/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.2 | 390. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
By formula: C16H11+ + C16H10 = (C16H11+ • C16H10)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.5 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29. | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1980 | gas phase |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: Timothy J. Johnson, Tanya L. Myers, Yin-Fong Su, Russell G. Tonkyn, Molly Rose K. Kelly-Gorham, and Tyler O. Danby
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 129 |
NIST MS number | 227992 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Smith, Stewart, et al., 1980
Smith, N.K.; Stewart, R.C., Jr.; Osborn, A.G.; Scott, D.W.,
Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties,
J. Chem. Thermodyn., 1980, 12, 919-926. [all data]
Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S.,
Strain energies and thermal properties of globular and polynuclear aromatic molecules,
AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]
Richardson and Parks, 1939
Richardson, J.W.; Parks, G.S.,
Thermal data on organic compounds. XIX. Modern combustion data for some non-volatile compounds containing carbon, hydrogen and oxygen,
J. Am. Chem. Soc., 1939, 61, 3543-3546. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Smith N.K., 1980
Smith N.K., Jr.,
Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties,
J. Chem. Thermodyn., 1980, 12, 919-926. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Richardson, 1939
Richardson, J.W.,
Precise determination of the heats of combustion of some representative organic compounds, Ph.D. Thesis for Standford University, 1939, 1-122. [all data]
Wong and Westrum, 1971
Wong, W-K.; Westrum, E.F., Jr.,
Thermodynamics of polynuclear aromatic molecules. I. Heat capacities and enthalpies of fusion of pyrene, flouranthene, and triphenylene,
J. Chem. Thermodynam., 1971, 3, 105-124. [all data]
Jacobs and Parks, 1934
Jacobs, C.J.; Parks, G.S.,
Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances,
J. Am. Chem. Soc., 1934, 56, 1513-1517. [all data]
Wong and Westrum, 1971, 2
Wong, W.-K.; Westrum, E.F.,
Thermodynamics of Polynuclear Aromatic Molecules. 1. Heat Capacities and Enthalpies of Fusion of Pyrene, Fluoranthene, and Triphenylene,
J. Chem. Thermodyn., 1971, 3, 105-24. [all data]
Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S.,
Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons,
J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x
. [all data]
Teodorescu, Barhala, et al., 2006
Teodorescu, Mariana; Barhala, Alexandru; Dragoescu, Dana,
Isothermal (vapour+liquid) equilibria for the binary (cyclopentanone or cyclohexanone with 1,1,2,2-tetrachloroethane) systems at temperatures of (343.15, 353.15, and 363.15)K,
The Journal of Chemical Thermodynamics, 2006, 38, 11, 1432-1437, https://doi.org/10.1016/j.jct.2006.01.010
. [all data]
Siddiqi, Siddiqui, et al., 2009
Siddiqi, M. Aslam; Siddiqui, Rehan A.; Atakan, Burak,
Thermal Stability, Sublimation Pressures, and Diffusion Coefficients of Anthracene, Pyrene, and Some Metal β-Diketonates,
J. Chem. Eng. Data, 2009, 54, 10, 2795-2802, https://doi.org/10.1021/je9001653
. [all data]
Rojas and Orozco, 2003
Rojas, Aarón; Orozco, Eulogio,
Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry,
Thermochimica Acta, 2003, 405, 1, 93-107, https://doi.org/10.1016/S0040-6031(03)00139-4
. [all data]
Hinckley, Bidleman, et al., 1990
Hinckley, Daniel A.; Bidleman, Terry F.; Foreman, William T.; Tuschall, Jack R.,
Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data,
J. Chem. Eng. Data, 1990, 35, 3, 232-237, https://doi.org/10.1021/je00061a003
. [all data]
Sasse, Jose, et al., 1988
Sasse, Karim; Jose, Jacques; Merlin, Jean-Claude,
A static apparatus for measurement of low vapor pressures. Experimental results on high molecular-weight hydrocarbons,
Fluid Phase Equilibria, 1988, 42, 287-304, https://doi.org/10.1016/0378-3812(88)80065-7
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Tsypikina and Ya, 1955
Tsypikina, O.; Ya, J.,
J. Appl. Chem. USSR, 1955, 28, 167. [all data]
Tsypkina, 1955
Tsypkina, O.Y.,
Study of Vacuum Pressure Influence on Efficiency of Separation of Some Polynuclear Compounds of Coal Tar Rectifications,
Zh. Prikl. Khim. (Moscow), 1955, 28, 2, 185-192. [all data]
Oja and Suuberg, 1998
Oja, Vahur; Suuberg, Eric M.,
Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives,
J. Chem. Eng. Data, 1998, 43, 3, 486-492, https://doi.org/10.1021/je970222l
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E.,
Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons,
Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022
. [all data]
Malaspina, Bardi, et al., 1974
Malaspina, L.; Bardi, G.; Gigli, R.,
Simultaneous determination by knudsen-effusion microcalorimetric technique of the vapor pressure and enthalpy of vaporization of pyrene and 1,3,5-triphenylbenzene,
The Journal of Chemical Thermodynamics, 1974, 6, 11, 1053-1064, https://doi.org/10.1016/0021-9614(74)90067-6
. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G.,
The vapour pressure and lattice energy of some aromatic ring compounds,
J. Am. Chem. Soc., 1953, 1690-16. [all data]
Inokuchi, Shiba, et al., 1952
Inokuchi, Hiroo; Shiba, Sukekuni; Handa, Takashi; Akamatu, Hideo,
Heats of Sublimation of Condensed Polynuclear Aromatic Hydrocarbons,
Bull. Chem. Soc. Jpn., 1952, 25, 5, 299-302, https://doi.org/10.1246/bcsj.25.299
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M.,
Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization,
J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,solid Constant pressure heat capacity of solid S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.