Boron monoxide


Gas phase thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar48.633cal/mol*KReviewChase, 1998Data last reviewed in June, 1968

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 5.6423818.701631
B 3.1639010.191318
C -0.424447-0.047593
D -0.3091040.006950
E 0.039208-0.804569
F -1.686781-4.302469
G 54.7588057.02110
H 0.0000000.000000
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1968 Data last reviewed in June, 1968

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through June, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 11B16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C 2Π(r) 55346.1 1 1315.3 H 11.1  1.483 0.018  0.000008  1.320 C → X R 55O61.5 2
missing citation; Kuzyakov, Tetevskiy, et al., 1960; missing citation
B 2Σ+ 43174.05 1281.69 Z 10.66  1.5171 3 4 0.0210  0.0000085  1.3054 B → A 5 V 19225.9
Mulliken, 1925
           B → A 5 V 19351.0
Mulliken, 1925
           B → X 6 R 42872.34 Z
missing citation; missing citation; Funke and Simons, 1935; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A 2Πi 23958.76 7 1260.70 Z 11.157 8 0.049 [1.4018] 94 0.0196  [0.00000763]  1.3533 A ↔ X 10 R 23646.43 8 Z
missing citation; missing citation; missing citation; missing citation; Thrush, 1960; Dunn and Hanson, 1969
23833.7          A ↔ X 10 R 23521.3 8 Z
missing citation; missing citation; missing citation; missing citation; Thrush, 1960; Dunn and Hanson, 1969
X 2Σ+ 0 1885.69 Z 11.81  1.7820 11 4 0.0166  0.00000632 12 0.00000002 1.2045 13  

Notes

1A= (+)46.4.
2R2 head at 55084.2 cm-1.
3Spin splitting constant γ ~ +0.025 Lagerqvist, Nilsson, et al., 1958, Dunn and Hanson, 1969.
4Potential curves Singh and Rai, 1965.
5Franck-Condon factors Nicholls, Fraser, et al., 1959.
6Franck-Condon factors Nicholls, Fraser, et al., 1959, Robinson and Nicholls, 1960, Liszt and Smith, 1971; measured relative intensities Robinson and Nicholls, 1960.
7A0= -122.26 Dunn and Hanson, 1969 (slight J dependence); A1 = -122.36 Jenkins and McKellar, 1932.
8{J'=0} relative to N"=0.
9Λ-type doubling Δvfe (2Π1/2) ~ +0.025(J+1/2) - ... Jenkins and McKellar, 1932, Dunn and Hanson, 1969; for 2Π3/2 see Jenkins and McKellar, 1932.
10Franck-Condon factors Nicholls, Fraser, et al., 1959, Nicholls, Fraser, et al., 1960, Robinson and Nicholls, 1960, Liszt and Smith, 1971; measured relative Robinson and Nicholls, 1960 and estimated absolute Kuz'menko, Kuznetsova, et al., 1974 intensities,
11From Lagerqvist, Nilsson, et al., 1958; slightly different constants in Jenkins and McKellar, 1932. Spin splitting constant γ(v=2) = +0.0065 Dunn and Hanson, 1969.
12missing note
13ESR sp. 15
14Thermochemical value (mass-spectrom.) Coppens, Smoes, et al., 1968, Uy and Drowart, 1970; in good agreement with 8.3 eV by flame photometry De Galan, 1965.
15In rare gas matrices at 4 K Knight, Easley, et al., 1971.
16From the heat of formation for BO- missing citation.

References

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Kuzyakov, Tetevskiy, et al., 1960
Kuzyakov, Yu.Ya.; Tetevskiy, V.M.; Tunitsky, L.N., Rotational analysis of boron monoxide bands located in the vacuum ultraviolet, Opt. Spectrosc. Engl. Transl., 1960, 9, 84. [all data]

Mulliken, 1925
Mulliken, R.S., The isotope effect in band spectra, II: the spectrum of boron monoxide, Phys. Rev., 1925, 25, 259. [all data]

Funke and Simons, 1935
Funke, V.J.; Simons, C.F.E., Uber die β-banden des bormonoxydes, Proc. K. Akad. Wet. Amsterdam, 1935, 38, 142. [all data]

Thrush, 1960
Thrush, B.A., Absorption spectra of diatomic radicals containing boron or silicon, Nature (London), 1960, 186, 1044. [all data]

Dunn and Hanson, 1969
Dunn, T.M.; Hanson, L.K., Rotational analysis of the 0,2 band of the 11BO α system, Can. J. Phys., 1969, 47, 1657. [all data]

Lagerqvist, Nilsson, et al., 1958
Lagerqvist, A.; Nilsson, N.E.L.; Wigartz, K., Rotational analysis of the β-system of BO, Ark. Fys., 1958, 13, 379. [all data]

Singh and Rai, 1965
Singh, R.B.; Rai, D.K., Internuclear potential curves for BO, IO and ClO, J. Quant. Spectrosc. Radiat. Transfer, 1965, 5, 723. [all data]

Nicholls, Fraser, et al., 1959
Nicholls, R.W.; Fraser, P.A.; Jarmain, W.R., Transition probability parameters of molecular spectra arising from combustion processes, Combust. Flame, 1959, 3, 13. [all data]

Robinson and Nicholls, 1960
Robinson, D.; Nicholls, R.W., Intensity measurements on the CO+ comet tail, and the BO α and β molecular band systems, Proc. Phys. Soc. London, 1960, 75, 817. [all data]

Liszt and Smith, 1971
Liszt, H.S.; Smith, Wm.H., RKR Franck-Condon factors for blue and ultraviolet transitions of some metal oxides, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1043. [all data]

Jenkins and McKellar, 1932
Jenkins, F.A.; McKellar, A., Mass ratio of the boron isotopes from the spectrum of BO, Phys. Rev., 1932, 42, 464. [all data]

Nicholls, Fraser, et al., 1960
Nicholls, R.W.; Fraser, P.A.; Jarmain, W.R.; McEachran, R.P., Vibrational transition probabilities of diatomic molecules: collected results. IV. BeO, BO, CH+, CO, NO, SH, O2, O2+, Astrophys. J., 1960, 131, 399. [all data]

Kuz'menko, Kuznetsova, et al., 1974
Kuz'menko, N.E.; Kuznetsova, L.A.; Kuzyakov, Yu.Ya.; Chuev, B.N., Determination of the square of the matrix element for the dipole moment of the electronic transition A2Π-X2Σ of the BO molecule, J. Appl. Spectrosc. Engl. Transl., 1974, 20, 373, In original 491. [all data]

Coppens, Smoes, et al., 1968
Coppens, P.; Smoes, S.; Drowart, J., Mass spectrometric determination of the dissociation energy of the molecule BO, Trans. Faraday Soc., 1968, 64, 630. [all data]

Uy and Drowart, 1970
Uy, O.M.; Drowart, J., Mass spectrometric determination of the dissociation energies of the boron monochalcogenides, High Temp. Sci., 1970, 2, 293. [all data]

De Galan, 1965
De Galan, L., An experimental value for the dissociation energy of boron oxide, Physica (Amsterdam), 1965, 31, 1286. [all data]

Knight, Easley, et al., 1971
Knight, L.B., Jr.; Easley, W.C.; Weltner, W., Jr., ESR of the BO molecule in inert matrices: a case of extreme preferential orientation, J. Chem. Phys., 1971, 54, 1610. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References