Dimethylamine
- Formula: C2H7N
- Molecular weight: 45.0837
- IUPAC Standard InChIKey: ROSDSFDQCJNGOL-UHFFFAOYSA-N
- CAS Registry Number: 124-40-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Methanamine, N-methyl-; (CH3)2NH; N-Methylmethanamine; Rcra waste number U092; UN 1032; N,N-Dimethylamine; NSC 8650
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Ion clustering data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: C2H8N+ + C2H7N = (C2H8N+ • C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 101. | kJ/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 87.0 | kJ/mol | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 108. | J/mol*K | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
By formula: (C2H8N+ • C2H7N) + C2H7N = (C2H8N+ • 2C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.6 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 114. | J/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: (C2H8N+ • 2C2H7N) + C2H7N = (C2H8N+ • 3C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. | kJ/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: (C2H8N+ • 3C2H7N) + C2H7N = (C2H8N+ • 4C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33. | kJ/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: (C2H8N+ • 4C2H7N) + C2H7N = (C2H8N+ • 5C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: C3H9Si+ + C2H7N = (C3H9Si+ • C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 251. | kJ/mol | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 179. | J/mol*K | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986; M |
By formula: C3H9Sn+ + C2H7N = (C3H9Sn+ • C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 185. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
ΔrH° | 185. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 127. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
ΔrS° | 133. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
118. | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
115. | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C3H10N+ + C2H7N = (C3H10N+ • C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 85.8 | kJ/mol | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 119. | J/mol*K | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
By formula: K+ + C2H7N = (K+ • C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 81.6 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.5 | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: Li+ + C2H7N = (Li+ • C2H7N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 177. | kJ/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 143. | kJ/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
By formula: Na+ + C2H7N = (Na+ • C2H7N)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
82.0 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
References
Go To: Top, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Yamdagni and Kebarle, 1973
Yamdagni, R.; Kebarle, P.,
Gas - Phase Basicites of Amines. Hydrogen Bonding in Proton - Bound Amine Dimers and Proton - Induced Cyclization of alpha, omega - Diamines,
J. Am. Chem. Soc., 1973, 95, 11, 3504, https://doi.org/10.1021/ja00792a010
. [all data]
Li and Stone, 1990
Li, X.; Stone, A.J.,
Gas-Phase (CH3)3Si+ Affinities of Alkylamines and Proton Affinities of Trimethylsilyl Alkylamines,
Int. J. Mass Spectrom. Ion Proc., 1990, 101, 2-3, 149, https://doi.org/10.1016/0168-1176(90)87008-5
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L.,
Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids,
J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Notes
Go To: Top, Ion clustering data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.