Carbon dioxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 51 to 100

(Nitrogen oxide anion • 6Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 7Carbon dioxide)

By formula: (NO2- • 6CO2) + CO2 = (NO2- • 7CO2)

Quantity Value Units Method Reference Comment
Δr18. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-8.8 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 7Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 8Carbon dioxide)

By formula: (NO2- • 7CO2) + CO2 = (NO2- • 8CO2)

Quantity Value Units Method Reference Comment
Δr18. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-9.6 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 2Carbon dioxide)

By formula: (NO2- • CO2) + CO2 = (NO2- • 2CO2)

Quantity Value Units Method Reference Comment
Δr28. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr4.2 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

O3S- + Carbon dioxide = (O3S- • Carbon dioxide)

By formula: O3S- + CO2 = (O3S- • CO2)

Quantity Value Units Method Reference Comment
Δr27.2 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr1.3 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Sodium ion (1+) • Carbon dioxide) + Carbon dioxide = (Sodium ion (1+) • 2Carbon dioxide)

By formula: (Na+ • CO2) + CO2 = (Na+ • 2CO2)

Quantity Value Units Method Reference Comment
Δr46.0kJ/molHPMSPeterson, Mark, et al., 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KHPMSPeterson, Mark, et al., 1984gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
20.310.DTKeller and Beyer, 1971gas phase; low E/N; M

CN- + Carbon dioxide = (CN- • Carbon dioxide)

By formula: CN- + CO2 = (CN- • CO2)

Quantity Value Units Method Reference Comment
Δr72.4 ± 3.3kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr132.J/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr33.1 ± 0.84kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B

(Nitric oxide anion • 5Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 6Carbon dioxide)

By formula: (NO- • 5CO2) + CO2 = (NO- • 6CO2)

Quantity Value Units Method Reference Comment
Δr21.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M

(Fluorine anion • 6Carbon dioxide) + Carbon dioxide = (Fluorine anion • 7Carbon dioxide)

By formula: (F- • 6CO2) + CO2 = (F- • 7CO2)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka, Mizuse, et al., 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr75.J/mol*KN/AHiraoka, Mizuse, et al., 1987gas phase; Entropy change calculated or estimated; M

(Formyl cation • 3Carbon dioxide) + Carbon dioxide = (Formyl cation • 4Carbon dioxide)

By formula: (CHO+ • 3CO2) + CO2 = (CHO+ • 4CO2)

Quantity Value Units Method Reference Comment
Δr35.kJ/molPHPMSHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated; M

(CO3- • 6Carbon dioxide) + Carbon dioxide = (CO3- • 7Carbon dioxide)

By formula: (CO3- • 6CO2) + CO2 = (CO3- • 7CO2)

Quantity Value Units Method Reference Comment
Δr18.6kJ/molPHPMSHiraoka and Yamabe, 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka and Yamabe, 1992gas phase; Entropy change calculated or estimated; M

(CO2+ • 5Carbon dioxide) + Carbon dioxide = (CO2+ • 6Carbon dioxide)

By formula: (CO2+ • 5CO2) + CO2 = (CO2+ • 6CO2)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Nakajima, et al., 1988gas phase; Entropy change calculated or estimated; M

(Oxygen cation • 5Carbon dioxide) + Carbon dioxide = (Oxygen cation • 6Carbon dioxide)

By formula: (O2+ • 5CO2) + CO2 = (O2+ • 6CO2)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka, Nakajima, et al., 1988gas phase; Entropy change calculated or estimated; M

Cesium ion (1+) + Carbon dioxide = (Cesium ion (1+) • Carbon dioxide)

By formula: Cs+ + CO2 = (Cs+ • CO2)

Quantity Value Units Method Reference Comment
Δr26.kJ/molDTMcKnight and Sawina, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr59.8J/mol*KDTMcKnight and Sawina, 1972gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
10.301.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

Potassium ion (1+) + Carbon dioxide = (Potassium ion (1+) • Carbon dioxide)

By formula: K+ + CO2 = (K+ • CO2)

Quantity Value Units Method Reference Comment
Δr36.kJ/molHPMSCastleman and Keesee, 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr63.6J/mol*KHPMSCastleman and Keesee, 1981gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.310.DTKeller and Beyer, 1971, 2gas phase; low E/N; M

(CHO2+ • 2Carbon dioxide) + Carbon dioxide = (CHO2+ • 3Carbon dioxide)

By formula: (CHO2+ • 2CO2) + CO2 = (CHO2+ • 3CO2)

Quantity Value Units Method Reference Comment
Δr25.kJ/molPHPMSHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated; M

Tetrafluoromethane + 2Water = Carbon dioxide + 4hydrogen fluoride

By formula: CF4 + 2H2O = CO2 + 4HF

Quantity Value Units Method Reference Comment
Δr-174. ± 4.2kJ/molCmGood, Scott, et al., 1956gas phase; HF has 10 moles H2O, see Scott, Good, et al., 1955; ALS
Δr-174. ± 4.2kJ/molCmScott, Good, et al., 1955gas phase; Heat of hydrolysis; ALS

O2S+ + Carbon dioxide = (O2S+ • Carbon dioxide)

By formula: O2S+ + CO2 = (O2S+ • CO2)

Quantity Value Units Method Reference Comment
Δr40. ± 0.8kJ/molDTIllies, 1988gas phase; ΔrH(0 K)=42.7 kJ/mol; M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=42.7 kJ/mol; M

Methyl cation + Carbon dioxide = (Methyl cation • Carbon dioxide)

By formula: CH3+ + CO2 = (CH3+ • CO2)

Quantity Value Units Method Reference Comment
Δr207.kJ/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M

(Iodide • 10Carbon dioxide) + Carbon dioxide = (Iodide • 11Carbon dioxide)

By formula: (I- • 10CO2) + CO2 = (I- • 11CO2)

Quantity Value Units Method Reference Comment
Δr4.2 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 11Carbon dioxide) + Carbon dioxide = (Iodide • 12Carbon dioxide)

By formula: (I- • 11CO2) + CO2 = (I- • 12CO2)

Quantity Value Units Method Reference Comment
Δr6.7 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 12Carbon dioxide) + Carbon dioxide = (Iodide • 13Carbon dioxide)

By formula: (I- • 12CO2) + CO2 = (I- • 13CO2)

Quantity Value Units Method Reference Comment
Δr4.6 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 10Carbon dioxide) + Carbon dioxide = (Bromine anion • 11Carbon dioxide)

By formula: (Br- • 10CO2) + CO2 = (Br- • 11CO2)

Quantity Value Units Method Reference Comment
Δr2. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 9Carbon dioxide) + Carbon dioxide = (Iodide • 10Carbon dioxide)

By formula: (I- • 9CO2) + CO2 = (I- • 10CO2)

Quantity Value Units Method Reference Comment
Δr4. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 9Carbon dioxide) + Carbon dioxide = (Bromine anion • 10Carbon dioxide)

By formula: (Br- • 9CO2) + CO2 = (Br- • 10CO2)

Quantity Value Units Method Reference Comment
Δr7.5 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Iodide • 8Carbon dioxide) + Carbon dioxide = (Iodide • 9Carbon dioxide)

By formula: (I- • 8CO2) + CO2 = (I- • 9CO2)

Quantity Value Units Method Reference Comment
Δr12. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 2Carbon dioxide) + Carbon dioxide = (Bromine anion • 3Carbon dioxide)

By formula: (Br- • 2CO2) + CO2 = (Br- • 3CO2)

Quantity Value Units Method Reference Comment
Δr21. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 3Carbon dioxide) + Carbon dioxide = (Bromine anion • 4Carbon dioxide)

By formula: (Br- • 3CO2) + CO2 = (Br- • 4CO2)

Quantity Value Units Method Reference Comment
Δr22. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 4Carbon dioxide) + Carbon dioxide = (Bromine anion • 5Carbon dioxide)

By formula: (Br- • 4CO2) + CO2 = (Br- • 5CO2)

Quantity Value Units Method Reference Comment
Δr18. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 5Carbon dioxide) + Carbon dioxide = (Bromine anion • 6Carbon dioxide)

By formula: (Br- • 5CO2) + CO2 = (Br- • 6CO2)

Quantity Value Units Method Reference Comment
Δr17. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 6Carbon dioxide) + Carbon dioxide = (Bromine anion • 7Carbon dioxide)

By formula: (Br- • 6CO2) + CO2 = (Br- • 7CO2)

Quantity Value Units Method Reference Comment
Δr15. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 7Carbon dioxide) + Carbon dioxide = (Bromine anion • 8Carbon dioxide)

By formula: (Br- • 7CO2) + CO2 = (Br- • 8CO2)

Quantity Value Units Method Reference Comment
Δr15. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Bromine anion • 8Carbon dioxide) + Carbon dioxide = (Bromine anion • 9Carbon dioxide)

By formula: (Br- • 8CO2) + CO2 = (Br- • 9CO2)

Quantity Value Units Method Reference Comment
Δr7.5 ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

Carbon dioxide + Carbon Tetrachloride = 2Phosgene

By formula: CO2 + CCl4 = 2CCl2O

Quantity Value Units Method Reference Comment
Δr70. ± 2.kJ/molEqkLord and Pritchard, 1969gas phase; Two values for Hf; ALS
Δr70. ± 2.kJ/molEqkLord and Pritchard, 1969gas phase; Two values for Hf; ALS

(Sodium ion (1+) • 2Water) + Carbon dioxide = (Sodium ion (1+) • Carbon dioxide • 2Water)

By formula: (Na+ • 2H2O) + CO2 = (Na+ • CO2 • 2H2O)

Quantity Value Units Method Reference Comment
Δr43.1kJ/molHPMSPeterson, Mark, et al., 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSPeterson, Mark, et al., 1984gas phase; M

(Nitric oxide anion • 2Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 3Carbon dioxide)

By formula: (NO- • 2CO2) + CO2 = (NO- • 3CO2)

Quantity Value Units Method Reference Comment
Δr30. ± 2.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 4Carbon dioxide)

By formula: (NO- • 3CO2) + CO2 = (NO- • 4CO2)

Quantity Value Units Method Reference Comment
Δr24. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr97.9J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 5Carbon dioxide)

By formula: (NO- • 4CO2) + CO2 = (NO- • 5CO2)

Quantity Value Units Method Reference Comment
Δr22. ± 1.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Sodium ion (1+) • Water) + Carbon dioxide = (Sodium ion (1+) • Carbon dioxide • Water)

By formula: (Na+ • H2O) + CO2 = (Na+ • CO2 • H2O)

Quantity Value Units Method Reference Comment
Δr52.7kJ/molHPMSPeterson, Mark, et al., 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KHPMSPeterson, Mark, et al., 1984gas phase; M

(Nitric oxide anion • Carbon dioxide) + Carbon dioxide = (Nitric oxide anion • 2Carbon dioxide)

By formula: (NO- • CO2) + CO2 = (NO- • 2CO2)

Quantity Value Units Method Reference Comment
Δr31. ± 2.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr71.5J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(CO3- • 2Carbon dioxide) + Carbon dioxide = (CO3- • 3Carbon dioxide)

By formula: (CO3- • 2CO2) + CO2 = (CO3- • 3CO2)

Quantity Value Units Method Reference Comment
Δr23.0 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M

(CO3- • 3Carbon dioxide) + Carbon dioxide = (CO3- • 4Carbon dioxide)

By formula: (CO3- • 3CO2) + CO2 = (CO3- • 4CO2)

Quantity Value Units Method Reference Comment
Δr21.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M

(CO3- • 4Carbon dioxide) + Carbon dioxide = (CO3- • 5Carbon dioxide)

By formula: (CO3- • 4CO2) + CO2 = (CO3- • 5CO2)

Quantity Value Units Method Reference Comment
Δr20.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr92.0J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M

(CO3- • 5Carbon dioxide) + Carbon dioxide = (CO3- • 6Carbon dioxide)

By formula: (CO3- • 5CO2) + CO2 = (CO3- • 6CO2)

Quantity Value Units Method Reference Comment
Δr19.5 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M

(CO2+ • 3Carbon dioxide) + Carbon dioxide = (CO2+ • 4Carbon dioxide)

By formula: (CO2+ • 3CO2) + CO2 = (CO2+ • 4CO2)

Quantity Value Units Method Reference Comment
Δr20. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M

(CO2+ • 4Carbon dioxide) + Carbon dioxide = (CO2+ • 5Carbon dioxide)

By formula: (CO2+ • 4CO2) + CO2 = (CO2+ • 5CO2)

Quantity Value Units Method Reference Comment
Δr18. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M

(Oxygen cation • 2Carbon dioxide) + Carbon dioxide = (Oxygen cation • 3Carbon dioxide)

By formula: (O2+ • 2CO2) + CO2 = (O2+ • 3CO2)

Quantity Value Units Method Reference Comment
Δr26. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr82.8J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M

(Oxygen cation • 3Carbon dioxide) + Carbon dioxide = (Oxygen cation • 4Carbon dioxide)

By formula: (O2+ • 3CO2) + CO2 = (O2+ • 4CO2)

Quantity Value Units Method Reference Comment
Δr21. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M

(Oxygen cation • 4Carbon dioxide) + Carbon dioxide = (Oxygen cation • 5Carbon dioxide)

By formula: (O2+ • 4CO2) + CO2 = (O2+ • 5CO2)

Quantity Value Units Method Reference Comment
Δr19. ± 2.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M

(CO3- • Carbon dioxide) + Carbon dioxide = (CO3- • 2Carbon dioxide)

By formula: (CO3- • CO2) + CO2 = (CO3- • 2CO2)

Quantity Value Units Method Reference Comment
Δr24.0 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M

(Hydronium cation • 2Carbon dioxide) + Carbon dioxide = (Hydronium cation • 3Carbon dioxide)

By formula: (H3O+ • 2CO2) + CO2 = (H3O+ • 3CO2)

Quantity Value Units Method Reference Comment
Δr43.9kJ/molPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hiraoka and Yamabe, 1992
Hiraoka, K.; Yamabe, S., Formation of the Chelate Bonds in the Cluster O2(-)(CO2)n, CO3(-)(CO2)n, and NO2(-)(CO2)n, J. Chem. Phys., 1992, 97, 1, 643, https://doi.org/10.1063/1.463560 . [all data]

Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr., Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions, J. Chem. Phys., 1980, 73, 2195. [all data]

Peterson, Mark, et al., 1984
Peterson, K.I.; Mark, T.D.; Keesee, R.G.; Castleman, A.W., Thermochemical Properties of Gas - Phase Mixed Clusters: H2O/CO2 with Na+, J. Phys. Chem., 1984, 88, 13, 2880, https://doi.org/10.1021/j150657a042 . [all data]

Keller and Beyer, 1971
Keller, G.E.; Beyer, R.A., CO2 and O2 Clustering to Sodium Ions, J. Geophys. Res., 1971, 74, 1, 289, https://doi.org/10.1029/JA076i001p00289 . [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5, J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518 . [all data]

Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S., Stability and Structure of Cluster Ions: Halide Ions with CO2, J. Chem. Phys., 1987, 87, 6, 3647, https://doi.org/10.1063/1.452962 . [all data]

Hiraoka, Shoda, et al., 1986
Hiraoka, K.; Shoda, T.; Morise, K.; Yamabe, S.; Kawai, E.; Hirao, K., Stability and structure of cluster ions in the gas phase: Carbon dioxide with Cl-, H3O+, HCO2+ and HCO+, J. Chem. Phys., 1986, 84, 2091. [all data]

Hiraoka, Nakajima, et al., 1988
Hiraoka, K.; Nakajima, G.; Shoda, S., Determination of the Stabilities of CO2+(CO2)n and O2+(CO2)n Clusters with n = 1 - 6, Chem. Phys. Lett., 1988, 146, 6, 535, https://doi.org/10.1016/0009-2614(88)87495-5 . [all data]

McKnight and Sawina, 1972
McKnight, L.G.; Sawina, J.M., Drift Velocities and Interactions of Cs+ Ions with Atmospheric Gases, J. Chem. Phys., 1972, 57, 12, 5156, https://doi.org/10.1063/1.1678205 . [all data]

Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V., Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions, J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543 . [all data]

Castleman and Keesee, 1981
Castleman, A.W.; Keesee, R.G., Electron and Ion Swarms, Proc. Second Int. Swarm Seminar, L. G. Christoforou, ed. (Pergamon Press, New York), 1981, 189-201. [all data]

Keller and Beyer, 1971, 2
Keller, G.E.; Beyer, R.A., Drift Tube Studies of Carbon Dioxide Clustering to Potassium and Sodium Ions, Bull. Am. Phys. Soc., 1971, 16, 214. [all data]

Good, Scott, et al., 1956
Good, W.D.; Scott, D.W.; Waddington, G., Combustion calorimetry of organic fluorine compounds by a rotating-bomb method, J. Phys. Chem., 1956, 60, 1080-1089. [all data]

Scott, Good, et al., 1955
Scott, D.W.; Good, W.D.; Waddington, G., Heat of formation of tetrafluoromethane from combustion calorimetry of polytetrafluoroethylene, J. Am. Chem. Soc., 1955, 77, 245-246. [all data]

Illies, 1988
Illies, A.J., Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures, J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037 . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of I-(CO2)n, Br-(CO2)n, and I-(N2O)n clusters by anion photoelectron spectroscopy, J. Chem. Phys., 1995, 102, 9, 3510, https://doi.org/10.1063/1.468576 . [all data]

Lord and Pritchard, 1969
Lord, A.; Pritchard, H.O., Thermodynamics of the reaction between carbon dioxide and carbon tetrachloride, J. Chem. Thermodyn., 1969, 1, 495-498. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References