Carbon dioxide
- Formula: CO2
- Molecular weight: 44.0095
- IUPAC Standard InChIKey: CURLTUGMZLYLDI-UHFFFAOYSA-N
- CAS Registry Number: 124-38-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Carbon oxide (CO2); Carbonic acid, gas; Carbonic anhydride; Dry ice; CO2; Anhydride carbonique; Carbonica; Kohlendioxyd; Kohlensaure; UN 1013; UN 1845; UN 2187; Cardice; Dricold; Drikold; Carbonic acid anhydride; Khladon 744; R 744
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 51 to 100
By formula: (NO2- • 6CO2) + CO2 = (NO2- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -8.8 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • 7CO2) + CO2 = (NO2- • 8CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -9.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (NO2- • CO2) + CO2 = (NO2- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.2 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: O3S- + CO2 = (O3S- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.2 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 86.6 | J/mol*K | HPMS | Keesee, Lee, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.3 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1980 | gas phase; B |
By formula: (Na+ • CO2) + CO2 = (Na+ • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20. | 310. | DT | Keller and Beyer, 1971 | gas phase; low E/N; M |
By formula: CN- + CO2 = (CN- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.4 ± 3.3 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 132. | J/mol*K | PHPMS | Larson, Szulejko, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 33.1 ± 0.84 | kJ/mol | TDAs | Larson, Szulejko, et al., 1988 | gas phase; B |
By formula: (NO- • 5CO2) + CO2 = (NO- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Hiraoka and Yamabe, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: (F- • 6CO2) + CO2 = (F- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kJ/mol | PHPMS | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75. | J/mol*K | N/A | Hiraoka, Mizuse, et al., 1987 | gas phase; Entropy change calculated or estimated; M |
By formula: (CHO+ • 3CO2) + CO2 = (CHO+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: (CO3- • 6CO2) + CO2 = (CO3- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.6 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Hiraoka and Yamabe, 1992 | gas phase; Entropy change calculated or estimated; M |
By formula: (CO2+ • 5CO2) + CO2 = (CO2+ • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92. | J/mol*K | N/A | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
By formula: (O2+ • 5CO2) + CO2 = (O2+ • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Hiraoka, Nakajima, et al., 1988 | gas phase; Entropy change calculated or estimated; M |
By formula: Cs+ + CO2 = (Cs+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | DT | McKnight and Sawina, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 59.8 | J/mol*K | DT | McKnight and Sawina, 1972 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10. | 301. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: K+ + CO2 = (K+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. | kJ/mol | HPMS | Castleman and Keesee, 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 63.6 | J/mol*K | HPMS | Castleman and Keesee, 1981 | gas phase; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 310. | DT | Keller and Beyer, 1971, 2 | gas phase; low E/N; M |
By formula: (CHO2+ • 2CO2) + CO2 = (CHO2+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Hiraoka, Shoda, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: CF4 + 2H2O = CO2 + 4HF
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -174. ± 4.2 | kJ/mol | Cm | Good, Scott, et al., 1956 | gas phase; HF has 10 moles H2O, see Scott, Good, et al., 1955; ALS |
ΔrH° | -174. ± 4.2 | kJ/mol | Cm | Scott, Good, et al., 1955 | gas phase; Heat of hydrolysis; ALS |
By formula: O2S+ + CO2 = (O2S+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. ± 0.8 | kJ/mol | DT | Illies, 1988 | gas phase; ΔrH(0 K)=42.7 kJ/mol; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.0 | J/mol*K | DT | Illies, 1988 | gas phase; ΔrH(0 K)=42.7 kJ/mol; M |
By formula: CH3+ + CO2 = (CH3+ • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 207. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
By formula: (I- • 10CO2) + CO2 = (I- • 11CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.2 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 11CO2) + CO2 = (I- • 12CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.7 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 12CO2) + CO2 = (I- • 13CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4.6 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 10CO2) + CO2 = (Br- • 11CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 2. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 9CO2) + CO2 = (I- • 10CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 4. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 9CO2) + CO2 = (Br- • 10CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.5 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (I- • 8CO2) + CO2 = (I- • 9CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 2CO2) + CO2 = (Br- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 3CO2) + CO2 = (Br- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 4CO2) + CO2 = (Br- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 5CO2) + CO2 = (Br- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 6CO2) + CO2 = (Br- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 7CO2) + CO2 = (Br- • 8CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15. ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: (Br- • 8CO2) + CO2 = (Br- • 9CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.5 ± 8.4 | kJ/mol | PDis | Arnold, Bradforth, et al., 1995 | gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B |
By formula: CO2 + CCl4 = 2CCl2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70. ± 2. | kJ/mol | Eqk | Lord and Pritchard, 1969 | gas phase; Two values for Hf; ALS |
ΔrH° | 70. ± 2. | kJ/mol | Eqk | Lord and Pritchard, 1969 | gas phase; Two values for Hf; ALS |
By formula: (Na+ • 2H2O) + CO2 = (Na+ • CO2 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.1 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
By formula: (NO- • 2CO2) + CO2 = (NO- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. ± 2. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.4 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 3CO2) + CO2 = (NO- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 1. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.9 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (NO- • 4CO2) + CO2 = (NO- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22. ± 1. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (Na+ • H2O) + CO2 = (Na+ • CO2 • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.7 | kJ/mol | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | HPMS | Peterson, Mark, et al., 1984 | gas phase; M |
By formula: (NO- • CO2) + CO2 = (NO- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31. ± 2. | kJ/mol | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1991 | gas phase; M |
By formula: (CO3- • 2CO2) + CO2 = (CO3- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 3CO2) + CO2 = (CO3- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.8 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 4CO2) + CO2 = (CO3- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.0 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO3- • 5CO2) + CO2 = (CO3- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.5 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (CO2+ • 3CO2) + CO2 = (CO2+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (CO2+ • 4CO2) + CO2 = (CO2+ • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 90.8 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (O2+ • 2CO2) + CO2 = (O2+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.8 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (O2+ • 3CO2) + CO2 = (O2+ • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. ± 1. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.0 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (O2+ • 4CO2) + CO2 = (O2+ • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 2. | kJ/mol | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 83.7 | J/mol*K | PHPMS | Hiraoka, Nakajima, et al., 1988 | gas phase; M |
By formula: (CO3- • CO2) + CO2 = (CO3- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
By formula: (H3O+ • 2CO2) + CO2 = (H3O+ • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.9 | kJ/mol | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Hiraoka, Shoda, et al., 1986 | gas phase; M |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Hiraoka and Yamabe, 1992
Hiraoka, K.; Yamabe, S.,
Formation of the Chelate Bonds in the Cluster O2(-)(CO2)n, CO3(-)(CO2)n, and NO2(-)(CO2)n,
J. Chem. Phys., 1992, 97, 1, 643, https://doi.org/10.1063/1.463560
. [all data]
Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr.,
Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions,
J. Chem. Phys., 1980, 73, 2195. [all data]
Peterson, Mark, et al., 1984
Peterson, K.I.; Mark, T.D.; Keesee, R.G.; Castleman, A.W.,
Thermochemical Properties of Gas - Phase Mixed Clusters: H2O/CO2 with Na+,
J. Phys. Chem., 1984, 88, 13, 2880, https://doi.org/10.1021/j150657a042
. [all data]
Keller and Beyer, 1971
Keller, G.E.; Beyer, R.A.,
CO2 and O2 Clustering to Sodium Ions,
J. Geophys. Res., 1971, 74, 1, 289, https://doi.org/10.1029/JA076i001p00289
. [all data]
Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B.,
Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements.,
J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004
. [all data]
Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S.,
Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5,
J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518
. [all data]
Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S.,
Stability and Structure of Cluster Ions: Halide Ions with CO2,
J. Chem. Phys., 1987, 87, 6, 3647, https://doi.org/10.1063/1.452962
. [all data]
Hiraoka, Shoda, et al., 1986
Hiraoka, K.; Shoda, T.; Morise, K.; Yamabe, S.; Kawai, E.; Hirao, K.,
Stability and structure of cluster ions in the gas phase: Carbon dioxide with Cl-, H3O+, HCO2+ and HCO+,
J. Chem. Phys., 1986, 84, 2091. [all data]
Hiraoka, Nakajima, et al., 1988
Hiraoka, K.; Nakajima, G.; Shoda, S.,
Determination of the Stabilities of CO2+(CO2)n and O2+(CO2)n Clusters with n = 1 - 6,
Chem. Phys. Lett., 1988, 146, 6, 535, https://doi.org/10.1016/0009-2614(88)87495-5
. [all data]
McKnight and Sawina, 1972
McKnight, L.G.; Sawina, J.M.,
Drift Velocities and Interactions of Cs+ Ions with Atmospheric Gases,
J. Chem. Phys., 1972, 57, 12, 5156, https://doi.org/10.1063/1.1678205
. [all data]
Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V.,
Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions,
J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543
. [all data]
Castleman and Keesee, 1981
Castleman, A.W.; Keesee, R.G.,
Electron and Ion Swarms,
Proc. Second Int. Swarm Seminar, L. G. Christoforou, ed. (Pergamon Press, New York), 1981, 189-201. [all data]
Keller and Beyer, 1971, 2
Keller, G.E.; Beyer, R.A.,
Drift Tube Studies of Carbon Dioxide Clustering to Potassium and Sodium Ions,
Bull. Am. Phys. Soc., 1971, 16, 214. [all data]
Good, Scott, et al., 1956
Good, W.D.; Scott, D.W.; Waddington, G.,
Combustion calorimetry of organic fluorine compounds by a rotating-bomb method,
J. Phys. Chem., 1956, 60, 1080-1089. [all data]
Scott, Good, et al., 1955
Scott, D.W.; Good, W.D.; Waddington, G.,
Heat of formation of tetrafluoromethane from combustion calorimetry of polytetrafluoroethylene,
J. Am. Chem. Soc., 1955, 77, 245-246. [all data]
Illies, 1988
Illies, A.J.,
Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures,
J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037
. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M.,
Study of I-(CO2)n, Br-(CO2)n, and I-(N2O)n clusters by anion photoelectron spectroscopy,
J. Chem. Phys., 1995, 102, 9, 3510, https://doi.org/10.1063/1.468576
. [all data]
Lord and Pritchard, 1969
Lord, A.; Pritchard, H.O.,
Thermodynamics of the reaction between carbon dioxide and carbon tetrachloride,
J. Chem. Thermodyn., 1969, 1, 495-498. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.