Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Hydrogen cation


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Fluorine anion + Hydrogen cation = hydrogen fluoride

By formula: F- + H+ = HF

Quantity Value Units Method Reference Comment
Deltar372. ± 1.kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar365.67 ± 0.18kcal/molH-TSBlondel, Delsart, et al., 2001gas phase; Given: 3.4011895(25) eV, or 27432.446(19) cm-1, or 78.433266(577) kcal/mol
Deltar365.53kcal/molH-TSMartin and Hepburn, 2000gas phase; Given: 371.334±0.003 kcal/mol (corr to 298K with data from Wagman, Evans, et al., 1982).H(0K)=370.422±0.003
Deltar365.67 ± 0.18kcal/molH-TSBlondel, Cacciani, et al., 1989gas phase; Reported: 3.401190±0.000004 eV. acidity includes 0.9 kcal 0 to 298 K correction.
Deltar365.5 ± 2.0kcal/molIMREBierbaum, Schmidt, et al., 1981gas phase
Deltar359.40kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCl3-; ; «DELTA»S(EA)=5.0

phenoxide anion + Hydrogen cation = Phenol

By formula: C6H5O- + H+ = C6H6O

Quantity Value Units Method Reference Comment
Deltar349. ± 2.kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar342.3 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Shiner, Vorner, et al., 1986: tautomer acidities «DELTA»Hacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale
Deltar340.8 ± 1.9kcal/molCIDCAngel and Ervin, 2004gas phase
Deltar343.4 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Deltar>341.5 ± 1.8kcal/molH-TSRichardson, Stephenson, et al., 1975gas phase

C2H- + Hydrogen cation = Acetylene

By formula: C2H- + H+ = C2H2

Quantity Value Units Method Reference Comment
Deltar379. ± 5.kcal/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar370. ± 5.kcal/molAVGN/AAverage of 7 values; Individual data points

CF3O- + Hydrogen cation = Carbonic difluoride

By formula: CF3O- + H+ = CF2O

Quantity Value Units Method Reference Comment
Deltar329.8 ± 2.0kcal/molG+TSHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Deltar347.5 ± 1.9kcal/molG+TSTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Deltar<341.9 ± 1.8kcal/molD-EAHuey, Dunlea, et al., 1996gas phase; EA > NO3
Deltar335.83kcal/molAcidLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Quantity Value Units Method Reference Comment
Deltar323.0 ± 1.6kcal/molIMRBHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Deltar340.7 ± 1.5kcal/molIMRBTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Deltar329.0 ± 1.2kcal/molH-TSLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.

CH3O- + Hydrogen cation = Methyl Alcohol

By formula: CH3O- + H+ = CH4O

Quantity Value Units Method Reference Comment
Deltar382. ± 2.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar376.02 ± 0.62kcal/molH-TSNee, Osterwalder, et al., 2006gas phase
Deltar376.04 ± 0.55kcal/molH-TSOsborn, Leahy, et al., 1998gas phase
Deltar374.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale
Deltar374.6 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar375.10 ± 0.60kcal/molTDEqMeot-ner and Sieck, 1986gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O

HS- + Hydrogen cation = Hydrogen sulfide

By formula: HS- + H+ = H2S

Quantity Value Units Method Reference Comment
Deltar351.4 ± 0.7kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar344.4 ± 3.0kcal/molH-TSRempala and Ervin, 2000gas phase
Deltar344.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar344.90 ± 0.10kcal/molH-TSShiell, Hu, et al., 1900gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05
Deltar345.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Deltar342.30kcal/molN/ACheck, Faust, et al., 2001gas phase; MnO2-(t); ; «DELTA»S(EA)=5.4

H2P- + Hydrogen cation = Phosphine

By formula: H2P- + H+ = H3P

Quantity Value Units Method Reference Comment
Deltar363.8 ± 1.5kcal/molD-EAErvin and Lineberger, 2005gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84
Deltar370.8 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale
Deltar364.3 ± 4.6kcal/molEIAEHalmann and Platzner, 1969gas phase
Deltar<366.6 ± 4.6kcal/molEIAEEbinghaus, Kraus, et al., 1964gas phase
Deltar365.60kcal/molN/ACheck, Faust, et al., 2001gas phase; MnF5-(q); ; «DELTA»S(EA)=2.9
Quantity Value Units Method Reference Comment
Deltar356.4 ± 1.6kcal/molH-TSErvin and Lineberger, 2005gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84
Deltar363.4 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale
Deltar358.70kcal/molN/ACheck, Faust, et al., 2001gas phase; MnF5-(q); ; «DELTA»S(EA)=2.9

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Deltar401.22 ± 0.50kcal/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale
Deltar401.16 ± 0.21kcal/molD-EAGunion, Gilles, et al., 1992gas phase
Deltar400.7 ± 2.5kcal/molTDEqMeot-ner and Sieck, 1986gas phase
Deltar401. ± 10.kcal/molCIDTGraul and Squires, 1990gas phase
Deltar398.0 ± 5.6kcal/molG+TSBohme and Young, 1971gas phase
Quantity Value Units Method Reference Comment
Deltar392.40 ± 0.40kcal/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale
Deltar390.9 ± 2.0kcal/molTDEqMeot-ner and Sieck, 1986gas phase
Deltar390.1 ± 6.5kcal/molIMRBBartmess and McIver Jr., 1979gas phase
Deltar389.2 ± 5.5kcal/molIMRBBohme and Young, 1971gas phase

H3Si- + Hydrogen cation = Silane

By formula: H3Si- + H+ = H4Si

Quantity Value Units Method Reference Comment
Deltar373.9 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Deltar372.9 ± 2.1kcal/molG+TSWetzel, Salomon, et al., 1989gas phase; value altered from reference due to change in acidity scale
Deltar372.80 ± 0.84kcal/molD-EANimlos and Ellison, 1986gas phase
Deltar372.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar373.90kcal/molN/ACheck, Faust, et al., 2001gas phase; MnS-(t); ; «DELTA»S(EA)=5.7
Quantity Value Units Method Reference Comment
Deltar365.7 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Deltar364.7 ± 2.0kcal/molIMREWetzel, Salomon, et al., 1989gas phase; value altered from reference due to change in acidity scale
Deltar364.58 ± 0.94kcal/molH-TSNimlos and Ellison, 1986gas phase
Deltar363.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar366.40kcal/molN/ACheck, Faust, et al., 2001gas phase; MnS-(t); ; «DELTA»S(EA)=5.7

C6H4F- + Hydrogen cation = Benzene, fluoro-

By formula: C6H4F- + H+ = C6H5F

Quantity Value Units Method Reference Comment
Deltar386.8 ± 2.1kcal/molG+TSBuker, Nibbering, et al., 1997gas phase
Deltar387.3 ± 2.1kcal/molG+TSAndrade and Riveros, 1996gas phase
Deltar387.2 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Deltar387.2 ± 2.5kcal/molBranWenthold and Squires, 1995, 2gas phase; By HO- cleavage of substituted silanes
Deltar387.2 ± 5.4kcal/molG+TSBriscese and Riveros, 1975gas phase
Quantity Value Units Method Reference Comment
Deltar378.6 ± 2.0kcal/molIMREBuker, Nibbering, et al., 1997gas phase
Deltar379.1 ± 2.0kcal/molIMREAndrade and Riveros, 1996gas phase
Deltar378.9 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Deltar379.0 ± 2.6kcal/molH-TSWenthold and Squires, 1995, 2gas phase; By HO- cleavage of substituted silanes
Deltar379.0 ± 5.3kcal/molIMRBBriscese and Riveros, 1975gas phase

FO3S- + Hydrogen cation = fluorosulphuric acid

By formula: FO3S- + H+ = HFO3S

Quantity Value Units Method Reference Comment
Deltar307.1 ± 2.6kcal/molG+TSViggiano, Henchman, et al., 1992gas phase
Deltar311.11kcal/molAcidLarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Deltar<313.6 ± 2.0kcal/molEIAEAdams, Smith, et al., 1986gas phase; From FSO3H (AP 0eV)
Quantity Value Units Method Reference Comment
Deltar300.0 ± 2.5kcal/molIMRBViggiano, Henchman, et al., 1992gas phase
Deltar304.02 ± 0.30kcal/molH-TSLarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Deltar<306.5 ± 3.0kcal/molH-TSAdams, Smith, et al., 1986gas phase; From FSO3H (AP 0eV)

C3H5- + Hydrogen cation = Cyclopropane

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Deltar410. ± 3.kcal/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar401. ± 3.kcal/molAVGN/AAverage of 3 out of 6 values; Individual data points

HO4S- + Hydrogen cation = Sulfuric Acid

By formula: HO4S- + H+ = H2O4S

Quantity Value Units Method Reference Comment
Deltar309.6 ± 5.4kcal/molD-EAWang, Nicholas, et al., 2000gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106
Deltar309.6 ± 2.6kcal/molG+TSViggiano, Henchman, et al., 1992gas phase
Deltar316.80kcal/molLattHouse Jr. and Kemper, 1987gas phase; From lattice energy of NH4HSO4, with new PA(NH3)
Deltar<315.40kcal/molG+TSVigiano, Perry, et al., 1980gas phase; I- + H2SO4 ->.
Deltar<313.6 ± 2.0kcal/molEIAEAdams, Smith, et al., 1986gas phase; From H2SO4 (AP 0eV)
Quantity Value Units Method Reference Comment
Deltar302.3 ± 5.5kcal/molH-TSWang, Nicholas, et al., 2000gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106
Deltar302.3 ± 2.5kcal/molIMRBViggiano, Henchman, et al., 1992gas phase
Deltar<308.00kcal/molIMRBVigiano, Perry, et al., 1980gas phase; I- + H2SO4 ->.
Deltar<306.2 ± 2.3kcal/molH-TSAdams, Smith, et al., 1986gas phase; From H2SO4 (AP 0eV)

F2N- + Hydrogen cation = Difluoramine

By formula: F2N- + H+ = HF2N

Quantity Value Units Method Reference Comment
Deltar371.0 ± 2.1kcal/molG+TSKoppel, Taft, et al., 1994gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns
Deltar360.0 ± 2.1kcal/molIMREKoppel, Pikver, et al., 1981gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore.
Deltar365.7 ± 3.5kcal/molD-EARuckhaberle, Lehmann, et al., 1997gas phase
Quantity Value Units Method Reference Comment
Deltar363.3 ± 2.0kcal/molIMREKoppel, Taft, et al., 1994gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns
Deltar352.2 ± 2.0kcal/molH-TSKoppel, Pikver, et al., 1981gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore.

C6H7Si- + Hydrogen cation = Silane, phenyl-

By formula: C6H7Si- + H+ = C6H8Si

Quantity Value Units Method Reference Comment
Deltar369.2 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Deltar368.1 ± 2.1kcal/molG+TSWetzel, Salomon, et al., 1989gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale
Deltar368.7 ± 3.0kcal/molD-EAWetzel, Salomon, et al., 1989gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol
Deltar370.7 ± 4.1kcal/molG+TSDamrauer, Kass, et al., 1988gas phase; Between HF and acetone
Quantity Value Units Method Reference Comment
Deltar362.1 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Deltar361.0 ± 2.0kcal/molIMREWetzel, Salomon, et al., 1989gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale
Deltar361.5 ± 3.1kcal/molH-TSWetzel, Salomon, et al., 1989gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol
Deltar363.6 ± 4.0kcal/molIMRBDamrauer, Kass, et al., 1988gas phase; Between HF and acetone

CF3- + Hydrogen cation = Fluoroform

By formula: CF3- + H+ = CHF3

Quantity Value Units Method Reference Comment
Deltar378.0 ± 1.4kcal/molD-EADeyerl, Alconcel, et al., 2001gas phase; Adiabatic EA, from vibrational structure of spectrum
Deltar377.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give «DELTA»Hacid=379.9, «DELTA»Gacid=372.0; value altered from reference due to change in acidity scale
Deltar376.0 ± 4.5kcal/molCIDTGraul and Squires, 1990gas phase
Quantity Value Units Method Reference Comment
Deltar370.3 ± 1.5kcal/molH-TSDeyerl, Alconcel, et al., 2001gas phase; Adiabatic EA, from vibrational structure of spectrum
Deltar369.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give «DELTA»Hacid=379.9, «DELTA»Gacid=372.0; value altered from reference due to change in acidity scale

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Deltar366.42 ± 0.81kcal/molD-EAMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1)
Deltar365.8 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale
Deltar366.5 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Deltar359.6 ± 1.2kcal/molH-TSMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1)
Deltar359.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale
Deltar359.7 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase

HCO2 anion + Hydrogen cation = Formic acid

By formula: CHO2- + H+ = CH2O2

Quantity Value Units Method Reference Comment
Deltar346.2 ± 1.2kcal/molD-EAKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol
Deltar345.3 ± 2.2kcal/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Deltar345.4 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar345.2 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase
Deltar340.1 ± 4.6kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Deltar339.2 ± 1.5kcal/molH-TSKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol
Deltar338.3 ± 2.0kcal/molIMRECaldwell, Renneboog, et al., 1989gas phase
Deltar338.4 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar338.2 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase

H3Ge- + Hydrogen cation = Germane

By formula: H3Ge- + H+ = H4Ge

Quantity Value Units Method Reference Comment
Deltar358.7 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Deltar358.9 ± 1.3kcal/molG+TSDecouzon, Gal, et al., 1993gas phase; The neutral acid «DELTA»Hf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997
Deltar>356.0 ± 2.7kcal/molD-EAReed and Brauman, 1974gas phase
Deltar362.00kcal/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)-(q); ; «DELTA»S(EA)=5.0
Quantity Value Units Method Reference Comment
Deltar350.6 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Deltar350.8 ± 1.2kcal/molIMREDecouzon, Gal, et al., 1993gas phase; The neutral acid «DELTA»Hf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997
Deltar>347.9 ± 2.8kcal/molH-TSReed and Brauman, 1974gas phase
Deltar353.90kcal/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)-(q); ; «DELTA»S(EA)=5.0

CH5Si- + Hydrogen cation = Silane, methyl-

By formula: CH5Si- + H+ = CH6Si

Quantity Value Units Method Reference Comment
Deltar377.4 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Deltar378.0 ± 3.0kcal/molD-EAWetzel, Salomon, et al., 1989gas phase
Deltar378.0 ± 2.1kcal/molG+TSWetzel, Salomon, et al., 1989gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale
Deltar385.4 ± 4.1kcal/molG+TSDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.
Quantity Value Units Method Reference Comment
Deltar369.0 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Deltar369.6 ± 3.1kcal/molH-TSWetzel, Salomon, et al., 1989gas phase
Deltar369.6 ± 2.0kcal/molIMREWetzel, Salomon, et al., 1989gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale
Deltar377.0 ± 4.0kcal/molIMRBDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.

C3HF6- + Hydrogen cation = Propane, 1,1,1,3,3,3-hexafluoro-

By formula: C3HF6- + H+ = C3H2F6

Quantity Value Units Method Reference Comment
Deltar363.7 ± 4.1kcal/molG+TSMcDonald, Chowdhury, et al., 1984gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale
Deltar351.6 ± 2.2kcal/molG+TSKoppel, Taft, et al., 1994gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF?
Quantity Value Units Method Reference Comment
Deltar356.0 ± 4.0kcal/molIMRBMcDonald, Chowdhury, et al., 1984gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale
Deltar343.9 ± 2.0kcal/molIMREKoppel, Taft, et al., 1994gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF?

C5H9O2- + Hydrogen cation = 2H-Pyran-2-ol, tetrahydro-

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Deltar368.0 ± 3.2kcal/molD-EABaer, Brinkman, et al., 1991gas phase; Structure: cyclic H-bonded 5-hydroxypentanal enolate
Deltar357.6 ± 2.1kcal/molG+TSBaer, Brinkman, et al., 1991gas phase; For deprotonation of neutral acetal.
Deltar358.9 ± 3.1kcal/molG+TSBartmess, Hays, et al., 1981gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization.
Quantity Value Units Method Reference Comment
Deltar351.0 ± 2.0kcal/molIMRBBaer, Brinkman, et al., 1991gas phase; For deprotonation of neutral acetal.
Deltar347.0 ± 3.0kcal/molIMRBBaer, Brinkman, et al., 1991gas phase; For reprotonation of anion: structure is cyclic H-bonded cyclic enolate
Deltar352.3 ± 3.0kcal/molIMRBBartmess, Hays, et al., 1981gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization.

H2As- + Hydrogen cation = Arsine

By formula: H2As- + H+ = H3As

Quantity Value Units Method Reference Comment
Deltar357.5 ± 2.1kcal/molG+TSGal, Maria, et al., 1989gas phase
Deltar357.8 ± 3.1kcal/molD-EASmyth and Brauman, 1972gas phase
Deltar361.9 ± 6.1kcal/molG+TSWyatt, Holtz, et al., 1974gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale
Deltar<359.7 ± 4.6kcal/molEIAEEbinghaus, Kraus, et al., 1964gas phase; From AsH3
Deltar359.00kcal/molN/ACheck, Faust, et al., 2001gas phase; CrOO-(q); ; «DELTA»S(EA)=1.7
Quantity Value Units Method Reference Comment
Deltar350.0 ± 2.0kcal/molIMREGal, Maria, et al., 1989gas phase
Deltar354.4 ± 6.0kcal/molIMRBWyatt, Holtz, et al., 1974gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale
Deltar352.20kcal/molN/ACheck, Faust, et al., 2001gas phase; CrOO-(q); ; «DELTA»S(EA)=1.7

C6H13O- + Hydrogen cation = 3,3-Dimethylbutane-2-ol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Deltar371.9 ± 2.0kcal/molD-EAMihalick, Gatev, et al., 1996gas phase; Derived BDE: 103.3±2.8 kcal/mol
Deltar371.4 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar371.1 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar365.1 ± 2.0kcal/molIMREClifford, Wenthold, et al., 1998gas phase
Deltar365.3 ± 2.1kcal/molH-TSMihalick, Gatev, et al., 1996gas phase; Derived BDE: 103.3±2.8 kcal/mol
Deltar364.8 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar364.5 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C3H3- + Hydrogen cation = Propyne

By formula: C3H3- + H+ = C3H4

Quantity Value Units Method Reference Comment
Deltar380.3 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Deltar381.8 ± 2.3kcal/molD-EARobinson, Polak, et al., 1995gas phase
Deltar381.1 ± 2.1kcal/molG+TSRobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme
Deltar381.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar372.6 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Deltar373.4 ± 2.0kcal/molIMRERobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme
Deltar373.3 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C7H7- + Hydrogen cation = Toluene

By formula: C7H7- + H+ = C7H8

Quantity Value Units Method Reference Comment
Deltar382.33 ± 0.45kcal/molD-EAGunion, Gilles, et al., 1992gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA
Deltar380.8 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar379.2 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Deltar377.0 ± 3.5kcal/molCIDTGraul and Squires, 1990gas phase
Deltar384.5 ± 7.1kcal/molG+TSBohme and Young, 1971gas phase
Quantity Value Units Method Reference Comment
Deltar373.7 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar372.1 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Deltar377.4 ± 7.0kcal/molIMRBBohme and Young, 1971gas phase

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Deltar391.10 ± 0.30kcal/molG+TSEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu
Deltar390.5 ± 1.0kcal/molD-EAWenthold, Polak, et al., 1996gas phase
Deltar390.7 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar390.25 ± 0.65kcal/molG+TSMackay, Lien, et al., 1978gas phase
Quantity Value Units Method Reference Comment
Deltar383.80 ± 0.10kcal/molIMREEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu
Deltar383.9 ± 1.1kcal/molH-TSWenthold, Polak, et al., 1996gas phase
Deltar384.1 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar383.60 ± 0.50kcal/molIMREMackay, Lien, et al., 1978gas phase

C4H9O- + Hydrogen cation = 1-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Deltar375.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar375.4 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar375.0 ± 2.9kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar368.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar368.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar368.4 ± 2.8kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C4H4N- + Hydrogen cation = 3-Butenenitrile

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Deltar357.3 ± 3.0kcal/molG+TSLuna, Mo, et al., 2006gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH
Deltar358.8 ± 3.1kcal/molG+TSChou, Dahlke, et al., 1993gas phase; Acid: CH2=CHCH2CN
Deltar363.5 ± 5.1kcal/molG+TSDahlke and Kass, 1991gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain.
Quantity Value Units Method Reference Comment
Deltar349.9 ± 3.0kcal/molIMRBLuna, Mo, et al., 2006gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH
Deltar351.7 ± 3.0kcal/molIMRBChou, Dahlke, et al., 1993gas phase; Acid: CH2=CHCH2CN
Deltar356.3 ± 5.0kcal/molIMRBDahlke and Kass, 1991gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain.
Deltar<365.0 ± 2.0kcal/molIMRBDawson and Nibbering, 1980gas phase; Acid: CH2=CHCH2CN

C4H9O- + Hydrogen cation = 2-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Deltar374.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar374.2 ± 2.1kcal/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale
Deltar374.1 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar367.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar367.6 ± 2.0kcal/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale
Deltar367.5 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

Chlorine anion + Hydrogen cation = Hydrogen chloride

By formula: Cl- + H+ = HCl

Quantity Value Units Method Reference Comment
Deltar333.40kcal/molN/AMartin and Hepburn, 1998gas phase; Given: «DELTA»Hacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol
Deltar333.6 ± 2.1kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar329.10kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; «DELTA»S(EA)=5.0
Quantity Value Units Method Reference Comment
Deltar328.10 ± 0.10kcal/molH-TSMartin and Hepburn, 1998gas phase; Given: «DELTA»Hacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol
Deltar328.3 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar323.70kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; «DELTA»S(EA)=5.0

C2H5O- + Hydrogen cation = Ethanol

By formula: C2H5O- + H+ = C2H6O

Quantity Value Units Method Reference Comment
Deltar379.2 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase
Deltar378.0 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar377.4 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar379.10 ± 0.10kcal/molCIDTDeTuri and Ervin, 1999gas phase
Quantity Value Units Method Reference Comment
Deltar372.6 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase
Deltar371.4 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Deltar370.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C4H9O- + Hydrogen cation = 2-Propanol, 2-methyl-

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Deltar374.7 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase
Deltar374.6 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar376.00 ± 0.70kcal/molCIDTDeTuri and Ervin, 1999gas phase
Deltar374.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Deltar368.1 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase
Deltar368.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar367.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C3H7O- + Hydrogen cation = Isopropyl Alcohol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Deltar375.1 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase
Deltar375.4 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar376.7 ± 1.0kcal/molCIDTDeTuri and Ervin, 1999gas phase
Deltar375.7 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Deltar368.5 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase
Deltar368.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar369.1 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Deltar407. ± 2.kcal/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar401.00 ± 0.50kcal/molIMREErvin, Gronert, et al., 1990gas phase
Deltar399.1 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase
Deltar398.6 ± 4.9kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase
Deltar>397.00kcal/molIMRBFroelicher, Freiser, et al., 1986gas phase

HSe- + Hydrogen cation = dihydrogen selenide

By formula: HSe- + H+ = H2Se

Quantity Value Units Method Reference Comment
Deltar341.48 ± 0.70kcal/molD-EAStoneman and Larson, 1986gas phase; Wagman, Evans, et al., 1982 «DELTA»Hf(AH) = 7.1 kcal/mol
Deltar342.7 ± 9.1kcal/molG+TSDixon, Holtz, et al., 1972gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale
Deltar340.50kcal/molN/ACheck, Faust, et al., 2001gas phase; MnO-(t); ; «DELTA»S(EA)=5.5
Quantity Value Units Method Reference Comment
Deltar335.19 ± 0.80kcal/molH-TSStoneman and Larson, 1986gas phase; Wagman, Evans, et al., 1982 «DELTA»Hf(AH) = 7.1 kcal/mol
Deltar336.4 ± 9.0kcal/molIMRBDixon, Holtz, et al., 1972gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale
Deltar334.20kcal/molN/ACheck, Faust, et al., 2001gas phase; MnO-(t); ; «DELTA»S(EA)=5.5

CHO3- + Hydrogen cation = Methaneperoxoic acid

By formula: CHO3- + H+ = CH2O3

Quantity Value Units Method Reference Comment
Deltar350.6 ± 3.4kcal/molG+TSVillano, Eyet, et al., 2010gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid
Deltar<370.6 ± 2.2kcal/molG+TSBowie, DePuy, et al., 1986gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m
Quantity Value Units Method Reference Comment
Deltar344.0 ± 3.3kcal/molIMRBVillano, Eyet, et al., 2010gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid
Deltar<364.0 ± 2.0kcal/molIMRBBowie, DePuy, et al., 1986gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m

C5H7O2- + Hydrogen cation = Acetylacetone

By formula: C5H7O2- + H+ = C5H8O2

Quantity Value Units Method Reference Comment
Deltar343.8 ± 2.1kcal/molG+TSTaft and Bordwell, 1988gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952)
Deltar343.7 ± 2.3kcal/molG+TSCumming and Kebarle, 1978gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. «DELTA»H=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999
Quantity Value Units Method Reference Comment
Deltar336.7 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952)
Deltar336.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. «DELTA»H=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999

C2H2N- + Hydrogen cation = Acetonitrile

By formula: C2H2N- + H+ = C2H3N

Quantity Value Units Method Reference Comment
Deltar372.9 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar369.0 ± 4.5kcal/molCIDTGraul and Squires, 1990gas phase
Deltar373.3 ± 2.6kcal/molG+TSCumming and Kebarle, 1978gas phase
Deltar374.8 ± 2.0kcal/molD-EAZimmerman and Brauman, 1977gas phase
Deltar366.6 ± 4.6kcal/molEIAEHeni and Illenberger, 1986gas phase; From MeCN
Quantity Value Units Method Reference Comment
Deltar365.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar365.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Deltar367.2 ± 2.1kcal/molH-TSZimmerman and Brauman, 1977gas phase

MeCO2 anion + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Deltar348.2 ± 1.4kcal/molCIDCAngel and Ervin, 2006gas phase
Deltar348.1 ± 2.2kcal/molG+TSTaft and Topsom, 1987gas phase
Deltar348.6 ± 2.1kcal/molG+TSCumming and Kebarle, 1978gas phase
Deltar348.7 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar343.20 ± 0.70kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Deltar341.1 ± 2.0kcal/molIMRETaft and Topsom, 1987gas phase
Deltar341.5 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Deltar341.7 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale

C3H3- + Hydrogen cation = Allene

By formula: C3H3- + H+ = C3H4

Quantity Value Units Method Reference Comment
Deltar380.0 ± 2.0kcal/molD-EARobinson, Polak, et al., 1995gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.
Deltar381.4 ± 3.1kcal/molG+TSRobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization
Deltar380.6 ± 2.1kcal/molD-EAOakes and Ellison, 1983gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.
Quantity Value Units Method Reference Comment
Deltar372.8 ± 3.0kcal/molIMRERobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization
Deltar372.0 ± 2.2kcal/molH-TSOakes and Ellison, 1983gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.

O3P- + Hydrogen cation = metaphosphoric acid

By formula: O3P- + H+ = HPO3

Quantity Value Units Method Reference Comment
Deltar310.8 ± 4.2kcal/molD-EAWang and Wang, 1999gas phase
Deltar310.8 ± 2.6kcal/molG+TSViggiano, Henchman, et al., 1992gas phase
Deltar310.7 ± 3.6kcal/molEndoViggiano, Morris, et al., 1991gas phase
Deltar<316.3 ± 3.1kcal/molG+TSHenchman, Viggiano, et al., 1985gas phase; The neutral thermochemistry appears to be in conflict with computational values
Quantity Value Units Method Reference Comment
Deltar303.5 ± 4.3kcal/molH-TSWang and Wang, 1999gas phase
Deltar303.5 ± 2.5kcal/molIMRBViggiano, Henchman, et al., 1992gas phase
Deltar<309.0 ± 3.0kcal/molIMRBHenchman, Viggiano, et al., 1985gas phase; The neutral thermochemistry appears to be in conflict with computational values

CHCl2- + Hydrogen cation = Methylene chloride

By formula: CHCl2- + H+ = CH2Cl2

Quantity Value Units Method Reference Comment
Deltar375.7 ± 2.2kcal/molG+TSBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol
Deltar374.5 ± 3.1kcal/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar368.0 ± 2.0kcal/molIMREBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol
Deltar369.00 ± 0.70kcal/molIMREPoutsma, Paulino, et al., 1997gas phase; relative to tBuOH at «DELTA»Gacid = 369.3
Deltar366.8 ± 3.0kcal/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale

C7H7O- + Hydrogen cation = p-Cresol

By formula: C7H7O- + H+ = C7H8O

Quantity Value Units Method Reference Comment
Deltar350.2 ± 2.1kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar350.2 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar351.6 ± 2.3kcal/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Deltar343.4 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar343.4 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Deltar344.7 ± 2.0kcal/molIMREKebarle and McMahon, 1977gas phase

benzoate anion + Hydrogen cation = Benzoic acid

By formula: C7H5O2- + H+ = C7H6O2

Quantity Value Units Method Reference Comment
Deltar340.1 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar340.0 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder
Deltar340.2 ± 2.2kcal/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Quantity Value Units Method Reference Comment
Deltar333.0 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Deltar332.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder
Deltar333.1 ± 2.0kcal/molIMRECaldwell, Renneboog, et al., 1989gas phase

C11H9- + Hydrogen cation = Naphthalene, 1-methyl-

By formula: C11H9- + H+ = C11H10

Quantity Value Units Method Reference Comment
Deltar374.0 ± 2.1kcal/molG+TSBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: «DELTA»G=349.0±2.0, «DELTA»S=27±2, «DELTA»H=357.1
Deltar370.7 ± 2.5kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Quantity Value Units Method Reference Comment
Deltar365.8 ± 2.0kcal/molIMREBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: «DELTA»G=349.0±2.0, «DELTA»S=27±2, «DELTA»H=357.1
Deltar362.4 ± 2.0kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.

C6H13O- + Hydrogen cation = 1-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Deltar374.0 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Deltar374.1 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar373.1 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar367.4 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Deltar367.5 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar366.5 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C7H15O- + Hydrogen cation = 1-Heptanol

By formula: C7H15O- + H+ = C7H16O

Quantity Value Units Method Reference Comment
Deltar374.6 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Deltar373.8 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar372.5 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar368.0 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Deltar367.2 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar365.9 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C8H17O- + Hydrogen cation = 1-Octanol

By formula: C8H17O- + H+ = C8H18O

Quantity Value Units Method Reference Comment
Deltar374.3 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Deltar373.5 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar371.8 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar367.7 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Deltar366.9 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar365.2 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C9H19O- + Hydrogen cation = 1-Nonanol

By formula: C9H19O- + H+ = C9H20O

Quantity Value Units Method Reference Comment
Deltar374.6 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Deltar373.2 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar371.2 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Deltar368.0 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Deltar366.6 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Deltar364.6 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Blondel, Delsart, et al., 2001
Blondel, C.; Delsart, C.; Goldfarb, F., Electron spectrometry at the mu eV level and the electron affinities of Si and F, J. Phys. B: Atom. Mol. Opt. Phys., 2001, 34, 9, L281-L288, https://doi.org/10.1088/0953-4075/34/9/101 . [all data]

Martin and Hepburn, 2000
Martin, J.D.D.; Hepburn, J.W., Faraday Disc. Chem. Soc., 2000, 115, 416. [all data]

Wagman, Evans, et al., 1982
Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties (NBS Tech Note 270), J. Phys. Chem. Ref. Data, Supl. 1, 1982, 11. [all data]

Blondel, Cacciani, et al., 1989
Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R., High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams, Phys. Rev. A, 1989, 40, 7, 3698, https://doi.org/10.1103/PhysRevA.40.3698 . [all data]

Bierbaum, Schmidt, et al., 1981
Bierbaum, V.M.; Schmidt, R.J.; DePuy, C.H.; Mead, R.H.; Schulz, P.A.; Lineberger, W.C., Reactions of carbanions with triplet and singlet molecular oxygen, J. Am. Chem. Soc., 1981, 103, 6262. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiner, Vorner, et al., 1986
Shiner, C.S.; Vorner, P.E.; Kass, S.R., Gas phase acidities and heats of formation of 2,4- and 2,5- cyclohexadien-1-one, the keto tautomers of phenol, J. Am. Chem. Soc., 1986, 108, 5699. [all data]

Capponi, Gut, et al., 1999
Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J., Ketonization equilibria of phenol in aqueous solution, Can. J. Chem., 1999, 77, 5-6, 605-613, https://doi.org/10.1139/v99-048 . [all data]

Angel and Ervin, 2004
Angel, L.A.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidity and O-H bond dissociation enthalpy of phenol, J. Phys. Chem. A, 2004, 108, 40, 8346-8352, https://doi.org/10.1021/jp0474529 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I., Photodetachment of electrons from phenoxides and thiophenoxide, J. Am. Chem. Soc., 1975, 97, 2967. [all data]

Huey, Dunlea, et al., 1996
Huey, L.G.; Dunlea, E.J.; Howard, C.J., Gas-Phase Acidity of CF3OH, J. Phys. Chem., 1996, 100, 16, 6504, https://doi.org/10.1021/jp953058m . [all data]

Segovia and Ventura, 1997
Segovia, M.; Ventura, O.N., Density functional and G2 study of the strength of the OH bond in CF3OH, Chem. Phys. Lett., 1997, 277, 5-6, 490-496, https://doi.org/10.1016/S0009-2614(97)00860-9 . [all data]

Burk, Koppel, et al., 2000
Burk, P.; Koppel, I.A.; Rummel, A.; Trummal, A., Can O-H acid be more acidic than its S-H analog? A G2 study of fluoromethanols and fluoromethanethiols, J. Phys. Chem. A, 2000, 104, 7, 1602-1607, https://doi.org/10.1021/jp993487a . [all data]

Chyall and Squires, 1996
Chyall, L.J.; Squires, R.R., The Proton Affinity and Absolute Heat of Formation of Trifluoromethanpl, J. Phys. Chem., 1996, 100, 16435. [all data]

Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F., Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids, J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M., Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H, J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016 . [all data]

Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W., A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule, J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H., High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-, Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609 . [all data]

Ervin and Lineberger, 2005
Ervin, K.M.; Lineberger, W.C., Photoelectron spectroscopy of phosphorus hydride anions, J. Chem. Phys., 2005, 122, 19, 194303, https://doi.org/10.1063/1.1881153 . [all data]

Curtiss, Raghavachari, et al., 1991
Curtiss, L.A.; Raghavachari, K.; Trucks, G.W.; Pople, J.A., Gaussian-2 Theory for Molecular Energies of First- and Second-row Compounds, J. Chem. Phys., 1991, 94, 11, 7221, https://doi.org/10.1063/1.460205 . [all data]

Ricca and Bauschlicher, 1998
Ricca, A.; Bauschlicher, C.W., Jr., Accurate Heats of Formation for PHn, PHn+, and PHn-, Chem. Phys. Lett., 1998, 285, 5-6, 455, https://doi.org/10.1016/S0009-2614(97)01468-1 . [all data]

Halmann and Platzner, 1969
Halmann, M.; Platzner, I., Negative Ions Produced by Electron Capture in Phosphine, J. Phys. Chem., 1969, 73, 12, 4376, https://doi.org/10.1021/j100846a062 . [all data]

Ebinghaus, Kraus, et al., 1964
Ebinghaus, H.; Kraus, K.; Neuert, H.; Muller-Duysing, W., Negative Ionen durch Elecktronenresonanzeinfang in PH3, AsH3, und SiH4, Z. Naturfor., 1964, 19A, 732. [all data]

Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R., The C-H bond energy of benzene, J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023 . [all data]

Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F., Anchoring the gas-phase acidity scale, J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n . [all data]

Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P., Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5, J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o . [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C., Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes, J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j . [all data]

Wetzel, Salomon, et al., 1989
Wetzel, D.M.; Salomon, K.E.; Berger, S.; Brauman, J.I., Gas-Phase Acidities of Organosilanes and Electron Affinities of Organosilyl Radicals, J. Am. Chem. Soc., 1989, 111, 11, 3835, https://doi.org/10.1021/ja00193a013 . [all data]

Nimlos and Ellison, 1986
Nimlos, M.R.; Ellison, G.B., Photoelectron spectroscopy of SiH3- and SiD3-, J. Am. Chem. Soc., 1986, 108, 6522. [all data]

Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M., Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution, Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3 . [all data]

Andrade and Riveros, 1996
Andrade, P.B.M.; Riveros, J.M., Relative Gas-phase Acidities of Fluoro- and Chlorobenzene, J. Mass Spectrom., 1996, 31, 7, 767, https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<767::AID-JMS345>3.0.CO;2-Q . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Wenthold and Squires, 1995, 2
Wenthold, P.G.; Squires, R.R., Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method, J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105 . [all data]

Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M., Gas phase nucleophilic reactions of aromatic systems, J. Am. Chem. Soc., 1975, 97, 230. [all data]

Viggiano, Henchman, et al., 1992
Viggiano, A.A.; Henchman, M.J.; Dale, F.; Deakyne, C.A.; Paulson, J.F., Gas-Phase Reactions of Weak Bronsted Bases I-, PO3-, HSO4-, FSO3-, and CF3SO3- with Strong Bronsted Acids H2SO4, FSO3H, and CF3SO3H - A Quantitative Study, J. Am. Chem. Soc., 1992, 114, 11, 4299, https://doi.org/10.1021/ja00037a039 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Adams, Smith, et al., 1986
Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J., Dissociative attachment reactions of electron with strong acid molecules, J. Chem. Phys., 1986, 84, 6728. [all data]

Wang, Nicholas, et al., 2000
Wang, X.B.; Nicholas, J.B.; Wang, L.S., Photoelectron spectroscopy and theoretical calculations of SO4- and HSO4-: Confirmation of high electron affinities of SO4 and HSO4, J. Phys. Chem. A, 2000, 104, 3, 504-508, https://doi.org/10.1021/jp992726r . [all data]

House Jr. and Kemper, 1987
House Jr.; Kemper, K.A., Proton Affinities of Sulfate and Bisulfate Ions, J. Thermal Anal., 1987, 32, 6, 1855, https://doi.org/10.1007/BF01913977 . [all data]

Vigiano, Perry, et al., 1980
Vigiano, A.A.; Perry, R.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., The role of H2SO4 in stratospheric negative ion chemistry, J. Geophys. Res., 1980, 85, 4551. [all data]

Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M., The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids, J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038 . [all data]

Koppel, Pikver, et al., 1981
Koppel, I.; Pikver, R.; Sugis, A.; Suurmaa, E.; Lippmaa, E., FTICR Study of Structure and Solvent Effects on Basicity of Some Anions in the Gas Phase, Org. Reac., 1981, 18, 3. [all data]

Ruckhaberle, Lehmann, et al., 1997
Ruckhaberle, N.; Lehmann, L.; Matejcik, S.; Illenberger, E.; Bouteiller, Y.; Periquet, V.; Museur, L.; Desfran, Free Electron Attachment and Rydberg Electron Transfer to NF3 Molecules and Clusters, J. Phys. Chem. A, 1997, 101, 51, 9942, https://doi.org/10.1021/jp972422+ . [all data]

Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H., Gas-Phase Acidities of Methylsilanes: C-H versus Si-H, Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011 . [all data]

Deyerl, Alconcel, et al., 2001
Deyerl, H.J.; Alconcel, L.S.; Continetti, R.E., Photodetachment imaging studies of the electron affinity of CF3, J. Phys. Chem. A, 2001, 105, 3, 552-557, https://doi.org/10.1021/jp003137k . [all data]

Paulino and Squires, 1991
Paulino, J.A.; Squires, R.R., Carbene Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements - The Heats of Formation of X1A1 CF2 and X1A1 CCl2, J. Am. Chem. Soc., 1991, 113, 15, 5573, https://doi.org/10.1021/ja00015a009 . [all data]

Mead, Lykke, et al., 1984
Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I., Spectroscopy and Dynamics of the Dipole-Bound State of Acetaldehyde Enolate., J. Chem. Phys., 1984, 81, 11, 4883., https://doi.org/10.1063/1.447515 . [all data]

Holmes and Lossing, 1982
Holmes, J.L.; Lossing, F.P., Heats of formation of the ionic and neutral enols of acetaldehyde and acetone, J. Am. Chem. Soc., 1982, 104, 2648. [all data]

Kim, Bradforth, et al., 1995
Kim, E.H.; Bradforth, S.E.; Arnold, D.W.; Metz, R.B.; Neumark, D.M., Study of HCO2 and DCO2 by Negative Ion Photoelectron Spectroscopy, J. Chem. Phys., 1995, 103, 18, 7801, https://doi.org/10.1063/1.470196 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Decouzon, Gal, et al., 1993
Decouzon, M.; Gal, J.F.; Gayraud, J.; Maria, P.C.; Vaglio, G.A.; Volpe, P., Fourier Transform-Ion Cyclotron Resonance Study of the Gas-Phase Acidities of Germane and Methylgermane - Bond Dissociation Energy of German, J. Am. Soc. Mass Spectrom., 1993, 4, 1, 54, https://doi.org/10.1016/1044-0305(93)85042-V . [all data]

Mayer, Gal, et al., 1997
Mayer, P.M.; Gal, J.-F.; Radom, L., The Heats of Formation, Gas-phase Acidities, and Related Thermochemical Properties of the Third-row Hydrides GeH4, AsH3, SeH2, and HBr from G2 ab initio Calculations, Int. J. Mass Spectrom. Ion Proc., 1997, 167/168, 689, https://doi.org/10.1016/S0168-1176(97)00127-4 . [all data]

Reed and Brauman, 1974
Reed, K.J.; Brauman, J.I., Photodetachment of electrons from Group IVa binary hydride anions: The electron affinities of the SiH3 and GeH3 radicals, J. Chem. Phys., 1974, 61, 4830. [all data]

McDonald, Chowdhury, et al., 1984
McDonald, R.N.; Chowdhury, A.K.; McGhee, W.D., Gas-Phase Generation of 1,1,1,3,3,3-Hexafluoroisopropylidene Anion Radical: Proton Affinity and Heat of Formation of (CF3)2C- and (CF3)2CH-, J. Am. Chem. Soc., 1984, 106, 15, 4112, https://doi.org/10.1021/ja00327a008 . [all data]

Baer, Brinkman, et al., 1991
Baer, S.; Brinkman, E.A.; Brauman, J.I., Hemiacetal Anions: A Model for Tetrahedral Reaction Intermediates, J. Am. Chem. Soc., 1991, 113, 3, 805, https://doi.org/10.1021/ja00003a012 . [all data]

Bartmess, Hays, et al., 1981
Bartmess, J.E.; Hays, R.L.; Caldwell, G., The Addition of Carbanions to Carbonyl Groups in the Gas Phase, J. Am. Chem. Soc., 1981, 103, 6, 1338, https://doi.org/10.1021/ja00396a006 . [all data]

Gal, Maria, et al., 1989
Gal, J.-F.; Maria, P.-C.; Decouzon, M., The Gas-Phase Acidity and Bond Dissociation Energies of Hydrogen Telluride, Int. J. Mass Spectrom. Ion Proc., 1989, 93, 1, 87, https://doi.org/10.1016/0168-1176(89)83076-9 . [all data]

Smyth and Brauman, 1972
Smyth, K.C.; Brauman, J.I., Photodetachment of electrons from amide and arsenide ions: The electron affinities of NH2 and AsH2., J. Chem. Phys., 1972, 56, 4620. [all data]

Wyatt, Holtz, et al., 1974
Wyatt, R.H.; Holtz, D.; McMahon, T.B.; Beauchamp, J.L., Acidity, basicity, and ion-molecule reactions of arsine in the gas phase by ICR spectroscopy, Inorg. Chem., 1974, 13, 1511. [all data]

Mihalick, Gatev, et al., 1996
Mihalick, J.E.; Gatev, G.G.; Brauman, J.I., Electron Photodetachment Spectroscopy of Solvated Anions: RO.HF- or ROH.F-?, J. Am. Chem. Soc., 1996, 118, 49, 12424, https://doi.org/10.1021/ja954202k . [all data]

Clifford, Wenthold, et al., 1998
Clifford, E.P.; Wenthold, P.G.; Gareyev, R.; Lineberger, W.C.; DePuy, C.H.; Bierbaum, V.M.; Ellison, G.B., Photoelectron spectroscopy, gas phase acidity, and thermochemistry of tert-butyl hydroperoxide: Mechanisms for the rearrangement of peroxyl radicals, J. Chem. Phys., 1998, 109, 23, 10293-10310, https://doi.org/10.1063/1.477725 . [all data]

Robinson, Polak, et al., 1995
Robinson, M.S.; Polak, M.L.; Bierbaum, V.M.; DePuy, C.H.; Lineberger, W.C., Experimental Studies of Allene, Methylacetylene, and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase Acidities, and Ion-Molecule Chemistry, J. Am. Chem. Soc., 1995, 117, 25, 6766, https://doi.org/10.1021/ja00130a017 . [all data]

Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C., Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions, J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o . [all data]

Ellison, Davico, et al., 1996
Ellison, G.B.; Davico, G.E.; Bierbaum, V.M.; DePuy, C.H., Thermochemistry of theb Benzyl and Allyl Radicals and Ions, Int. J. Mass Spectrom. Ion Proc., 1996, 156, 1-2, 109-131, https://doi.org/10.1016/S0168-1176(96)04383-2 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Mackay, Lien, et al., 1978
Mackay, G.I.; Lien, M.H.; Hopkinson, A.C.; Bohme, D.K., Experimental and theoretical studies of proton removal from propene, Can. J. Chem., 1978, 56, 131. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Luna, Mo, et al., 2006
Luna, A.; Mo, O.; Yanez, M.; Gal, J.F.; Maria, P.C.; Guillemin, J.C., Gas-phase protonation and deprotonation of acrylonitrile derivatives N equivalent to C-CH=CH-X (X=CH3, NH2, PH2, SiH3), Chem. Eur. J., 2006, 12, 36, 9254-9261, https://doi.org/10.1002/chem.200600154 . [all data]

Chou, Dahlke, et al., 1993
Chou, P.K.; Dahlke, G.D.; Kass, S.R., Unimolecular Rearrangements of Carbanions in the Gas Phase .2. Cyclopropyl Anions, J. Chem. Soc. Chem. Comm., 1993, 115, 1, 315, https://doi.org/10.1021/ja00054a045 . [all data]

Dahlke and Kass, 1991
Dahlke, G.D.; Kass, S.R., Substituent Effects in the Gas Phase - 1-Substituted Allyl Anions, J. Am. Chem. Soc., 1991, 113, 15, 5566, https://doi.org/10.1021/ja00015a008 . [all data]

Dawson and Nibbering, 1980
Dawson, J.H.J.; Nibbering, N.M.M., The gas phase anionic chemistry of saturated and unsaturated aliphatic nitriles, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 3. [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Martin and Hepburn, 1998
Martin, J.D.D.; Hepburn, J.W., Determination of bond dissociation energies by threshold ion-pair production spectroscopy: An improved D-0(HCl), J. Chem. Phys., 1998, 109, 19, 8139-8142, https://doi.org/10.1063/1.477476 . [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Stoneman and Larson, 1986
Stoneman, R.C.; Larson, D.J., Photodetachment spectroscopy of SeH- in a magnetic field, J. Phys. B:, 1986, 19, 405. [all data]

Dixon, Holtz, et al., 1972
Dixon, D.A.; Holtz, D.; Beauchamp, J.L., Acidity, basicity, and gas-phase ion chemistry of hydrogen selenide by ion cyclotron resonance spectroscopy, Inorg. Chem., 1972, 11, 960. [all data]

Villano, Eyet, et al., 2010
Villano, S.M.; Eyet, N.; Wren, S.W.; Ellison, G.B.; Bierbaum, V.M.; Lineberger, W.C., Photoelectron Spectroscopy and Thermochemistry of the Peroxyformate Anion, J. Phys. Chem. A, 2010, 114, 1, 191-200, https://doi.org/10.1021/jp907569w . [all data]

Bowie, DePuy, et al., 1986
Bowie, J.H.; DePuy, C.H.; Sullivan, S.A.; Berbaum, V.M., Gas phase reactions of the hydroperoxide and peroxyformate anions, Can. J. Chem., 1986, 64, 1046. [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Strohmeier and Höhne, 1952
Strohmeier, W.; Höhne, I., Keto-Enol-Umwandlung des Acetylacteons in Gaszustand, Z. Naturfor., 1952, 7B, 184. [all data]

Folkendt, Weiss-Lopez, et al., 1989
Folkendt, M.M.; Weiss-Lopez, B.E.; Chauvel, J.P., Jr.; True, N.S., Gas-Phase 1H NMR Studies of Keto-Enol Tautomerization of Acetylacetone, Methyl Acetoacetate, and Ethyl Acetoacetate, J. Phys. Chem., 1989, 89, 15, 3347, https://doi.org/10.1021/j100261a038 . [all data]

Irikura, 1999
Irikura, K.K., Acetylacetonate (acac) anion in the gas phase: predicted structures, vibrational spectra, and photodetachment energies, Int. J. Mass Spectrom., 1999, 187, 577-587, https://doi.org/10.1016/S1387-3806(98)14192-1 . [all data]

Zimmerman and Brauman, 1977
Zimmerman, A.H.; Brauman, J.I., Electron photodetachment from negative ions of C2v symmetry. Electron affinities of allyl and cyanomethyl radicals, J. Am. Chem. Soc., 1977, 99, 3565. [all data]

Heni and Illenberger, 1986
Heni, M.; Illenberger, E., Electron attachment by saturated nitriles. Acrylonitrile (CH2H3CN), and benzonitrile (C6H5CN), Int. J. Mass Spectrom. Ion Phys., 1986, 73, 127. [all data]

Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M., Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid, J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426 . [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Oakes and Ellison, 1983
Oakes, J.M.; Ellison, B.G., Photoelectron spectroscopy of the allenyl anion CH2=C=CH-, J. Am. Chem. Soc., 1983, 105, 2969. [all data]

Wang and Wang, 1999
Wang, X.B.; Wang, L.S., Vibrationally resolved photoelectron spectroscopy of PO3- and the electronic structure of PO3, Chem. Phys. Lett., 1999, 313, 1-2, 179-183, https://doi.org/10.1016/S0009-2614(99)00993-8 . [all data]

Viggiano, Morris, et al., 1991
Viggiano, A.A.; Morris, R.A.; Dale, F.; Paulson, J.F.; Henshman, M.J.; Miller, T.M.; Miller, S., The Gas Phase Acidities of HPO3 and HPO2: Enthalpies of Deprotonation, J. Phys. Chem., 1991, 95, 3, 1275, https://doi.org/10.1021/j100156a044 . [all data]

Henchman, Viggiano, et al., 1985
Henchman, M.; Viggiano, A.A.; Paulson, J.F.; Freedman, A.; Wormhoudt, J., Thermodynamic and kinetic properties of the metaphosphate anion, PO3-, in the gas phase, J. Am. Chem. Soc., 1985, 107, 1453. [all data]

Born, Ingemann, et al., 2000
Born, M.; Ingemann, S.; Nibbering, N.M.M., Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase, Int. J. Mass Spectrom., 2000, 194, 2-3, 103-113, https://doi.org/10.1016/S1387-3806(99)00125-6 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R., Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study., J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f . [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]

Bartmess and Griffiths, 1990
Bartmess, J.E.; Griffiths, S.S., Tautomerization Energetics of Benzoannelated Toluenes, J. Am. Chem. Soc., 1990, 112, 8, 2932, https://doi.org/10.1021/ja00164a014 . [all data]

Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A., Ionic Probes of Aromaticity in Annelated Rings, J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001 . [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References