Hydrogen cation
- Formula: H+
- Molecular weight: 1.00739
- IUPAC Standard InChIKey: GPRLSGONYQIRFK-UHFFFAOYSA-N
- CAS Registry Number: 12408-02-5
- Chemical structure:
This structure is also available as a 2d Mol file - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 650, reactions 651 to 700, reactions 701 to 750, reactions 751 to 800, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1001 to 1050, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1375
- Gas phase ion energetics data
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 201 to 250
C7H6NO2- + =
By formula: C7H6NO2- + H+ = C7H7NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1475. ± 8.8 | kJ/mol | G+TS | Taft and Topsom, 1987 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1477. ± 10. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1445. ± 8.4 | kJ/mol | IMRE | Taft and Topsom, 1987 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1447. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
C19H15- + =
By formula: C19H15- + H+ = C19H16
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1501. ± 9.2 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase |
ΔrH° | 1510. ± 10. | kJ/mol | G+TS | Bartmess | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1467. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase |
ΔrG° | 1476. ± 9.6 | kJ/mol | IMRE | Bartmess | gas phase; value altered from reference due to change in acidity scale |
C2H6N- + =
By formula: C2H6N- + H+ = C2H7N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1653. ± 8.4 | kJ/mol | D-EA | Radisic, Xu, et al., 2002 | gas phase; BDE supported by 72GOL/SOL, over McMillen and Golden, 1982 |
ΔrH° | 1658.7 ± 3.7 | kJ/mol | G+TS | MacKay, Hemsworth, et al., 1976 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1623. ± 8.8 | kJ/mol | H-TS | Radisic, Xu, et al., 2002 | gas phase; BDE supported by 72GOL/SOL, over McMillen and Golden, 1982 |
ΔrG° | 1628.4 ± 2.5 | kJ/mol | IMRE | MacKay, Hemsworth, et al., 1976 | gas phase |
CNS- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <1361. ± 4.6 | kJ/mol | D-EA | Bradforth, Kim, et al., 1993 | gas phase; Acid HNCS. HSCN up by ca. 8 kcal/mol |
ΔrH° | 1375. ± 21. | kJ/mol | G+TS | Bierbaum, Grabowski, et al., 1984 | gas phase; Acid: HNCS |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | <1329. ± 5.9 | kJ/mol | H-TS | Bradforth, Kim, et al., 1993 | gas phase; Acid HNCS. HSCN up by ca. 8 kcal/mol |
ΔrG° | 1343. ± 21. | kJ/mol | IMRB | Bierbaum, Grabowski, et al., 1984 | gas phase; Acid: HNCS |
C10H7- + =
By formula: C10H7- + H+ = C10H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1538. ± 10. | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; Acidity seriously disagrees with high level calculations. Dissociative to acetylide? C-3is most acidic site by G3MP2B3 calns. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1507. ± 8.4 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; Acidity seriously disagrees with high level calculations. Dissociative to acetylide? C-3is most acidic site by G3MP2B3 calns. |
C3H2F3O- + =
By formula: C3H2F3O- + H+ = C3H3F3O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1461. ± 8.8 | kJ/mol | G+TS | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1466. ± 15. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1431. ± 8.4 | kJ/mol | IMRE | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1436. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
C6H2N3O7- + =
By formula: C6H2N3O7- + H+ = C6H3N3O7
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1298. ± 9.2 | kJ/mol | G+TS | Koppel, Taft, et al., 1994 | gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1267. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol. |
ΔrG° | <1292.9 | kJ/mol | IMRB | Dzidic, Carroll, et al., 1974 | gas phase; I- deprotonates |
By formula: C8H6NO4- + H+ = C8H7NO4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1317. ± 13. | kJ/mol | D-EA | Wang, Broadus, et al., 2000 | gas phase; Vertical Detachment Energy: 5.02±0.05 eV |
ΔrH° | 1304. ± 21. | kJ/mol | G+TS | Broadus and Kass, 2000 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1286. ± 14. | kJ/mol | H-TS | Wang, Broadus, et al., 2000 | gas phase; Vertical Detachment Energy: 5.02±0.05 eV |
ΔrG° | 1273. ± 21. | kJ/mol | IMRB | Broadus and Kass, 2000 | gas phase |
CNO- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1427.5 ± 2.6 | kJ/mol | D-EA | Bradforth, Kim, et al., 1993 | gas phase; D-EA cycle requires a DH ca 4 kcal/mol weaker |
ΔrH° | 1442. ± 8.8 | kJ/mol | G+TS | Wight and Beauchamp, 1980 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1400.6 ± 3.0 | kJ/mol | H-TS | Bradforth, Kim, et al., 1993 | gas phase; D-EA cycle requires a DH ca 4 kcal/mol weaker |
ΔrG° | 1415. ± 8.4 | kJ/mol | IMRE | Wight and Beauchamp, 1980 | gas phase |
CClF2- + =
By formula: CClF2- + H+ = CHClF2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >1567.8 | kJ/mol | Acid | Paulino and Squires, 1991 | gas phase; Probably CF2..Cl-, non-covalent. |
ΔrH° | 1583. ± 29. | kJ/mol | D-EA | Dispert and Lacmann, 1978 | gas phase; From CF2Cl2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | >1535.4 ± 3.7 | kJ/mol | H-TS | Paulino and Squires, 1991 | gas phase; Probably CF2..Cl-, non-covalent. |
ΔrG° | 1550. ± 30. | kJ/mol | H-TS | Dispert and Lacmann, 1978 | gas phase; From CF2Cl2 |
C4H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1628. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase; Acid: MeC≡CMe |
ΔrH° | 1628. ± 14. | kJ/mol | G+TS | N/A | gas phase; Measured vs pyridine |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1597. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase; Acid: MeC≡CMe |
ΔrG° | 1596. ± 13. | kJ/mol | IMRE | N/A | gas phase; Measured vs pyridine |
By formula: C6H5S- + H+ = C6H6S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1424. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase |
ΔrH° | >1423. ± 7.5 | kJ/mol | D-EA | Richardson, Stephenson, et al., 1975 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1395. ± 8.8 | kJ/mol | IMRE | Guillemin, Riague, et al., 2005 | gas phase |
ΔrG° | 1397. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase |
ΔrG° | >1395. ± 7.9 | kJ/mol | H-TS | Richardson, Stephenson, et al., 1975 | gas phase |
C4H4NO2- + =
By formula: C4H4NO2- + H+ = C4H5NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1426. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
ΔrH° | 1425. ± 8.8 | kJ/mol | G+TS | Taft, Abboud, et al., 1988 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1400. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
ΔrG° | 1399. ± 8.4 | kJ/mol | IMRE | Taft, Abboud, et al., 1988 | gas phase |
By formula: C2F3O- + H+ = C2HF3O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >1623. ± 17. | kJ/mol | D-EA | Harland and Thynne, 1970 | gas phase; From (CF3)2CO. Values unreasonable: ΔHf(CF3CO-)must be less than ΔHf(CF3-+CO)=-181. G3MP2B3 EA = 1.6 eV |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | >1590. ± 17. | kJ/mol | H-TS | Harland and Thynne, 1970 | gas phase; From (CF3)2CO. Values unreasonable: ΔHf(CF3CO-)must be less than ΔHf(CF3-+CO)=-181. G3MP2B3 EA = 1.6 eV |
C9H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1555. ± 9.6 | kJ/mol | G+TS | Chabinyc and Brauman, 1999 | gas phase; reported as 365.2/372.8, relative to MeOH at 375.2; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1523. ± 8.4 | kJ/mol | IMRE | Chabinyc and Brauman, 1999 | gas phase; reported as 365.2/372.8, relative to MeOH at 375.2; value altered from reference due to change in acidity scale |
CCl2F- + =
By formula: CCl2F- + H+ = CHCl2F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1503.6 | kJ/mol | Acid | Poutsma, Paulino, et al., 1997 | gas phase |
ΔrH° | 1507. ± 8.8 | kJ/mol | G+TS | Poutsma, Paulino, et al., 1997 | gas phase |
ΔrH° | <1506. ± 20. | kJ/mol | D-EA | Illenberger, Baumgartel, et al., 1979 | gas phase; From CF2Cl2 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1471.2 ± 2.5 | kJ/mol | H-TS | Poutsma, Paulino, et al., 1997 | gas phase |
ΔrG° | 1475. ± 8.4 | kJ/mol | IMRB | Poutsma, Paulino, et al., 1997 | gas phase |
C15H11- + =
By formula: C15H11- + H+ = C15H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1515. ± 10. | kJ/mol | G+TS | Bartmess and Griffiths, 1990 | gas phase; Isomer 9-methylene-9,10-dihydroanthracene: ΔG=349.0±3.0, ΔS=27.0, ΔH=357.1;DH: Zhang, Bordwell, et al., 1993 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1486. ± 9.6 | kJ/mol | IMRE | Bartmess and Griffiths, 1990 | gas phase; Isomer 9-methylene-9,10-dihydroanthracene: ΔG=349.0±3.0, ΔS=27.0, ΔH=357.1;DH: Zhang, Bordwell, et al., 1993 |
C8H7O2- + =
By formula: C8H7O2- + H+ = C8H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1427. ± 8.8 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase |
ΔrH° | 1425. ± 8.8 | kJ/mol | G+TS | Decouzon, Exner, et al., 1996 | gas phase; relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1397. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase |
ΔrG° | 1396. ± 8.4 | kJ/mol | IMRE | Decouzon, Exner, et al., 1996 | gas phase; relative to benzoate at 333.0 kcal/mol |
C8H7O2- + =
By formula: C8H7O2- + H+ = C8H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1425. ± 8.8 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase |
ΔrH° | 1424. ± 8.8 | kJ/mol | G+TS | Decouzon, Exner, et al., 1996 | gas phase; Relative to benzoate at 333.0 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1396. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase |
ΔrG° | 1395. ± 8.4 | kJ/mol | IMRE | Decouzon, Exner, et al., 1996 | gas phase; Relative to benzoate at 333.0 kcal/mol |
HBe- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1630. ± 13. | kJ/mol | D-EA | Rackwitz, Feldman, et al., 1977 | gas phase; ΔHf(BeH2){ Chase Jr., Davies, et al., 1985} is 1959 SWAG. G3(MP2)calcn(JEB): ΔHf=44.5kcal, BDE=92.1, ΔHacid=389.7 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1595. ± 13. | kJ/mol | H-TS | Rackwitz, Feldman, et al., 1977 | gas phase; ΔHf(BeH2){ Chase Jr., Davies, et al., 1985} is 1959 SWAG. G3(MP2)calcn(JEB): ΔHf=44.5kcal, BDE=92.1, ΔHacid=389.7 |
CHF2- + =
By formula: CHF2- + H+ = CH2F2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1628. ± 15. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase; G2 calculations( Lee, Dyke, et al., 1998) predict ΔHacid = 399 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1595. ± 15. | kJ/mol | H-TS | Graul and Squires, 1990 | gas phase; G2 calculations( Lee, Dyke, et al., 1998) predict ΔHacid = 399 kcal/mol |
ΔrG° | 1586. ± 25. | kJ/mol | IMRB | Sullivan, 1977 | gas phase |
+ = C2H
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >1460. ± 15. | kJ/mol | D-EA | Arnold, Bradforth, et al., 1991 | gas phase |
ΔrH° | <1572. ± 9.6 | kJ/mol | G+TS | Schiff and Bohme, 1975 | gas phase; No reaction with acetylene |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | >1430. ± 16. | kJ/mol | H-TS | Arnold, Bradforth, et al., 1991 | gas phase |
ΔrG° | <1542. ± 8.4 | kJ/mol | IMRB | Schiff and Bohme, 1975 | gas phase; No reaction with acetylene |
C4H5O- + =
By formula: C4H5O- + H+ = C4H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1576. ± 13. | kJ/mol | G+TS | Kleingeld and Nibbering, 1984 | gas phase; Acid: 2-methylpropenal. Reprotonation to dimethyl ketene? G3MP2B3 calculations indicate a dHacid of 396 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1544. ± 13. | kJ/mol | IMRB | Kleingeld and Nibbering, 1984 | gas phase; Acid: 2-methylpropenal. Reprotonation to dimethyl ketene? G3MP2B3 calculations indicate a dHacid of 396 kcal/mol |
C4H7O2- + =
By formula: C4H7O2- + H+ = C4H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1451. ± 8.4 | kJ/mol | TDEq | Norrman and McMahon, 1999 | gas phase |
ΔrH° | 1450. ± 9.2 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrH° | 1450. ± 9.2 | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1420. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrG° | 1420. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
C3H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1755. ± 8.4 | kJ/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase |
ΔrH° | 1755. ± 20. | kJ/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase |
ΔrH° | 1753. ± 8.4 | kJ/mol | Bran | DePuy, Bierbaum, et al., 1984 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1721. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase |
ΔrG° | 1722. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
CH3S2- + =
By formula: CH3S2- + H+ = CH4S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1471. ± 13. | kJ/mol | G+TS | Downard, Bowie, et al., 1992 | gas phase; Acid: between CF3COCH3, tBuSH |
ΔrH° | 1471. ± 17. | kJ/mol | D-EA | Moran and Ellison, 1988 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1443. ± 13. | kJ/mol | IMRB | Downard, Bowie, et al., 1992 | gas phase; Acid: between CF3COCH3, tBuSH |
ΔrG° | 1443. ± 17. | kJ/mol | H-TS | Moran and Ellison, 1988 | gas phase |
C7H6NO2 + =
By formula: C7H6NO2 + H+ = C7H7NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1507. ± 21. | kJ/mol | D-EA | Wang, Broadus, et al., 2000 | gas phase; ArCO2-: EAad = 3.8±0.1 eV |
ΔrH° | 1448. ± 21. | kJ/mol | G+TS | Broadus and Kass, 2000 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1474. ± 21. | kJ/mol | H-TS | Wang, Broadus, et al., 2000 | gas phase; ArCO2-: EAad = 3.8±0.1 eV |
ΔrG° | 1415. ± 21. | kJ/mol | IMRB | Broadus and Kass, 2000 | gas phase |
C5H9O- + =
By formula: C5H9O- + H+ = C5H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1602. ± 19. | kJ/mol | D-EA | Alconcel and Continetti, 2002 | gas phase; derived acidity seems ca. 10 kcal/mol too weak, and EA likewise |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1535. ± 4.6 | kJ/mol | N/A | Garver, Yang, et al., 2011 | gas phase |
ΔrG° | 1569. ± 20. | kJ/mol | H-TS | Alconcel and Continetti, 2002 | gas phase; derived acidity seems ca. 10 kcal/mol too weak, and EA likewise |
C4H3N2- + =
By formula: C4H3N2- + H+ = C4H4N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1612. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1576.5 ± 2.9 | kJ/mol | N/A | Wren, Vogelhuber, et al., 2012 | gas phase |
ΔrG° | 1577. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale |
C4H3N2- + =
By formula: C4H3N2- + H+ = C4H4N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1600. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Pyridazine. Anchored to 88MEO scale, not the "87 Acidity Scale". |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1564.8 ± 2.9 | kJ/mol | N/A | Wren, Vogelhuber, et al., 2012 | gas phase |
ΔrG° | 1562. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; Pyridazine. Anchored to 88MEO scale, not the "87 Acidity Scale". |
C2H7Si- + =
By formula: C2H7Si- + H+ = C2H8Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1594. ± 8.8 | kJ/mol | D-EA | Brinkman, Berger, et al., 1994 | gas phase |
ΔrH° | 1610. ± 17. | kJ/mol | G+TS | Damrauer, Kass, et al., 1988 | gas phase; Between furan and methanol. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1561. ± 9.2 | kJ/mol | H-TS | Brinkman, Berger, et al., 1994 | gas phase |
ΔrG° | 1577. ± 17. | kJ/mol | IMRB | Damrauer, Kass, et al., 1988 | gas phase; Between furan and methanol. |
C6H4NO2- + =
By formula: C6H4NO2- + H+ = C6H5NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1399. ± 8.4 | kJ/mol | CIDC | Schafman and Wenthold, 2007 | gas phase |
ΔrH° | 1395. ± 12. | kJ/mol | G+TS | Breuker, Knochenmuss, et al., 1999 | gas phase; Acid: nicotinic acid |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1370. ± 9.2 | kJ/mol | H-TS | Schafman and Wenthold, 2007 | gas phase |
ΔrG° | 1366. ± 11. | kJ/mol | IMRB | Breuker, Knochenmuss, et al., 1999 | gas phase; Acid: nicotinic acid |
C6H15OSi- + =
By formula: C6H15OSi- + H+ = C6H16OSi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1497. ± 9.2 | kJ/mol | G+TS | Grimm and Bartmess, 1992 | gas phase |
ΔrH° | 1504. ± 17. | kJ/mol | G+TS | Damrauer, Simon, et al., 1991 | gas phase; between pyrrole, CF3CH2OH |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1471. ± 8.4 | kJ/mol | IMRE | Grimm and Bartmess, 1992 | gas phase |
ΔrG° | 1477. ± 17. | kJ/mol | IMRB | Damrauer, Simon, et al., 1991 | gas phase; between pyrrole, CF3CH2OH |
C2H6O3P- + =
By formula: C2H6O3P- + H+ = C2H7O3P
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1492. ± 15. | kJ/mol | G+TS | McDonald, Chowdhury, et al., 1987 | gas phase; Acidity between MeNO2, EtSH. Acid taken as (MeO)2P(O)H. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1461. ± 15. | kJ/mol | IMRB | McDonald, Chowdhury, et al., 1987 | gas phase; Acidity between MeNO2, EtSH. Acid taken as (MeO)2P(O)H. |
ΔrG° | 1469. ± 17. | kJ/mol | IMRB | Anderson, DePuy, et al., 1984 | gas phase; Between MeSH, H2S |
C2H3O2- + =
By formula: C2H3O2- + H+ = C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <1606.7 | kJ/mol | CIDT | Graul and Squires, 1988 | gas phase |
ΔrH° | <1639.1 ± 3.8 | kJ/mol | G+TS | DePuy, Grabowski, et al., 1985 | gas phase; HO- + DCO2CH3 -> (M-D)-. ΔHf(MeO- + CO) = -59.7 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | <1606.7 | kJ/mol | IMRB | DePuy, Grabowski, et al., 1985 | gas phase; HO- + DCO2CH3 -> (M-D)-. ΔHf(MeO- + CO) = -59.7 kcal/mol |
CHN2- + =
By formula: CHN2- + H+ = CH2N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1681. ± 13. | kJ/mol | G+TS | Kroeker and Kass, 1990 | gas phase; Between MeNH2, EtNH2. The expt dHf(diazirine) disagrees with numerous l calculations by -14 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1648. ± 13. | kJ/mol | IMRB | Kroeker and Kass, 1990 | gas phase; Between MeNH2, EtNH2. The expt dHf(diazirine) disagrees with numerous l calculations by -14 kcal/mol |
BF2- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1564. ± 26. | kJ/mol | D-EA | Srivastava, Uy, et al., 1974 | gas phase; EA: 29.2 kcal < EA(F), new EA(F) used. Too stable by ca. 24 kcal/mol, relative to G3(MP2)B3 calcs. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1533. ± 26. | kJ/mol | H-TS | Srivastava, Uy, et al., 1974 | gas phase; EA: 29.2 kcal < EA(F), new EA(F) used. Too stable by ca. 24 kcal/mol, relative to G3(MP2)B3 calcs. |
C2H5Si- + =
By formula: C2H5Si- + H+ = C2H6Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1593. ± 21. | kJ/mol | G+TS | Damrauer, DePuy, et al., 1986 | gas phase; May have rearranged to 2-sila-allyl anion: G3MP2B3 calculations indicate an acidity of 361 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1565. ± 21. | kJ/mol | IMRB | Damrauer, DePuy, et al., 1986 | gas phase; May have rearranged to 2-sila-allyl anion: G3MP2B3 calculations indicate an acidity of 361 kcal/mol |
C2H4NO- + =
By formula: C2H4NO- + H+ = C2H5NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1515. ± 8.8 | kJ/mol | G+TS | Decouzon, Exner, et al., 1990 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1500. ± 5.0 | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1485. ± 8.4 | kJ/mol | IMRE | Decouzon, Exner, et al., 1990 | gas phase; value altered from reference due to change in acidity scale |
C3F5O- + =
By formula: C3F5O- + H+ = C3HF5O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1412. ± 18. | kJ/mol | G+TS | Farid and McMahon, 1980 | gas phase; Between FCH2CO2H, HCl; nearer to HCl; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1384. ± 17. | kJ/mol | IMRB | Farid and McMahon, 1980 | gas phase; Between FCH2CO2H, HCl; nearer to HCl; value altered from reference due to change in acidity scale |
CF3S- + =
By formula: CF3S- + H+ = CHF3S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1400. ± 9.6 | kJ/mol | G+TS | Koppel, Pihl, et al., 1994 | gas phase; Possibly dissociative protonation -> CF2S + HF + A-. See CF3O-. G2: 321.0, Burk, Koppel, et al., 2000 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1370. ± 8.4 | kJ/mol | IMRE | Koppel, Pihl, et al., 1994 | gas phase; Possibly dissociative protonation -> CF2S + HF + A-. See CF3O-. G2: 321.0, Burk, Koppel, et al., 2000 |
CH3S- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1654. ± 11. | kJ/mol | G+TS | Kass, Guo, et al., 1990 | gas phase; Acidity between D2O and Me2NH. |
ΔrH° | 1638. ± 32. | kJ/mol | D-EA | Kass, Guo, et al., 1990 | gas phase; Between O2 and SO2. Explains bad anchor in McIver Jr. and Fukuda, 1982 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1624. ± 10. | kJ/mol | IMRB | Kass, Guo, et al., 1990 | gas phase; Acidity between D2O and Me2NH. |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1466. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
ΔrH° | 1461.9 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; NiH2; ; ΔS(EA)=10.0 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1432. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
ΔrG° | 1428.4 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; NiH2; ; ΔS(EA)=10.0 |
C8H5O- + =
By formula: C8H5O- + H+ = C8H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1505. ± 9.2 | kJ/mol | G+TS | Broadus and Kass, 1999 | gas phase; Correction to direction of ΔGacid reported in literature: Kass, private communication |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1473. ± 8.8 | kJ/mol | IMRE | Broadus and Kass, 1999 | gas phase; Correction to direction of ΔGacid reported in literature: Kass, private communication |
By formula: C10H15O2- + H+ = C10H16O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1435. ± 8.8 | kJ/mol | G+TS | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1405. ± 8.4 | kJ/mol | CIDC | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
C9H15O2Si- + = C9H16O2Si
By formula: C9H15O2Si- + H+ = C9H16O2Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1435. ± 8.8 | kJ/mol | G+TS | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1405. ± 8.4 | kJ/mol | CIDC | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
By formula: C8H9O3- + H+ = C8H10O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1419. ± 8.8 | kJ/mol | G+TS | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1390. ± 8.4 | kJ/mol | CIDC | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
By formula: C6H6FO2- + H+ = C6H7FO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1415. ± 8.8 | kJ/mol | G+TS | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1385. ± 8.4 | kJ/mol | CIDC | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
By formula: C6H6ClO2- + H+ = C6H7ClO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1409. ± 8.8 | kJ/mol | G+TS | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1379. ± 8.4 | kJ/mol | CIDC | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
By formula: C7H6F3O2- + H+ = C7H7F3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1407. ± 8.8 | kJ/mol | G+TS | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1377. ± 8.4 | kJ/mol | CIDC | Adcock, Baran, et al., 2005 | gas phase; Entropy of acidity reassigned at 24 eu; authors did not take symmetry changes into account |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D.,
The Nature and Analysis of Substituent Effects,
Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Bartmess
Bartmess, J.E.,
The Gas Phase Thermochemistry of Ph3C-, Ph3C., and Ph3C+, 32nd Ann. Conf. on Mass Spectrom. Allied Topics, San Antonio TX 27 May-1 June 1984. Abstracts p. 472. [all data]
Radisic, Xu, et al., 2002
Radisic, D.; Xu, S.J.; Bowen, K.H.,
Photoelectron spectroscopy of the anions, CH3NH- and (CH3)(2)N- and the anion complexes, H-(CH3NH2) and (CH3)(2)N-[(CH3)(2)NH),
Chem. Phys. Lett., 2002, 354, 1-2, 9-13, https://doi.org/10.1016/S0009-2614(01)01470-1
. [all data]
McMillen and Golden, 1982
McMillen, D.F.; Golden, D.M.,
Hydrocarbon bond dissociation energies,
Ann. Rev. Phys. Chem., 1982, 33, 493. [all data]
MacKay, Hemsworth, et al., 1976
MacKay, G.J.; Hemsworth, R.S.; Bohme, D.K.,
Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N,
Can. J. Chem., 1976, 54, 1624. [all data]
Bradforth, Kim, et al., 1993
Bradforth, S.E.; Kim, E.H.; Arnold, D.W.; Neumark, D.M.,
Photoelectron Spectroscopy of CN-, NCO-, and NCS-,
J. Chem. Phys., 1993, 98, 2, 800, https://doi.org/10.1063/1.464244
. [all data]
Bierbaum, Grabowski, et al., 1984
Bierbaum, V.M.; Grabowski, J.J.; DePuy, C.H.,
Gas-phase synthesis and reactions of nitrogen- and sulfur-containing anions,
J. Phys. Chem., 1984, 88, 1389. [all data]
Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A.,
Ionic Probes of Aromaticity in Annelated Rings,
J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001
. [all data]
Taft, 1987
Taft, R.W.,
The Nature and Analysis of Substitutent Electronic Effects,
Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M.,
The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids,
J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038
. [all data]
Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A.,
Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1),
J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k
. [all data]
Dzidic, Carroll, et al., 1974
Dzidic, I.; Carroll, D.I.; Stillwell, R.N.; Horning, E.C.,
Gas phase reactions. Ionization by proton transfer to superoxide anions,
J. Am. Chem. Soc., 1974, 96, 5258. [all data]
Wang, Broadus, et al., 2000
Wang, X.B.; Broadus, K.M.; Wang, L.S.; Kass, S.R.,
Photodetachment of the first zwitterionic anions in the gas phase: Probing intramolecular Coulomb repulsion and attraction,
J. Am. Chem. Soc., 2000, 122, 34, 8305-8306, https://doi.org/10.1021/ja001943z
. [all data]
Broadus and Kass, 2000
Broadus, K.M.; Kass, S.R.,
Probing Electrostatic Effects: Formation and Characterization of Zwitterionic Ions and their Neutral Counterparts in the Gas Phase,
J. Am. Chem. Soc., 2000, 122, 37, 9014, https://doi.org/10.1021/ja0016708
. [all data]
Wight and Beauchamp, 1980
Wight, C.A.; Beauchamp, J.L.,
Acidity, basicity, and ion/molecule reactions of isocyanic acid in the gas phase by ICR spectroscopy,
J. Phys. Chem., 1980, 84, 2503. [all data]
Paulino and Squires, 1991
Paulino, J.A.; Squires, R.R.,
Carbene Anion Complexes - Unusual Structural and Thermochemical Features of alpha-Halocarbanions in the Gas Phase,
J. Am. Chem. Soc., 1991, 113, 5, 1845, https://doi.org/10.1021/ja00005a067
. [all data]
Dispert and Lacmann, 1978
Dispert, H.; Lacmann, K.,
Negative ion formation in collisions between potassium and fluoro- and chloromethanes: Electron affinities and bond dissociation energies,
Int. J. Mass Spectrom. Ion Phys., 1978, 28, 49. [all data]
Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C.,
Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes,
J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j
. [all data]
Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I.,
Photodetachment of electrons from phenoxides and thiophenoxide,
J. Am. Chem. Soc., 1975, 97, 2967. [all data]
Guillemin, Riague, et al., 2005
Guillemin, J.C.; Riague, E.H.; Gal, J.F.; Maria, P.C.; Mo, O.; Yanez, M.,
Acidity trends in alpha,beta-unsaturated sulfur, selenium, and tellurium derivatives: Comparison with C-, Si-, Ge-, Sn-, N-, P-, As-, and Sb-containing analogues,
Chem. Eur. J., 2005, 11, 7, 2145-2153, https://doi.org/10.1002/chem.200400989
. [all data]
Mishima, Matsuoka, et al., 2004
Mishima, M.; Matsuoka, M.; Lei, Y.X.; Rappoport, Z.,
Gas-phase acidities of disubstituted methanes and of enols of carboxamides substituted by electron-withdrawing groups,
J. Org. Chem., 2004, 69, 18, 5947-5965, https://doi.org/10.1021/jo040196b
. [all data]
Taft, Abboud, et al., 1988
Taft, R.W.; Abboud, J.L.M.; Anvia, F.; Berthelot, M.; Fujio, M.; Gal, J.-F.; Headley, A.D.; Henderson, W.G.,
Regarding the Inherent Dependence of Resonance Effects of Strongly Conjugated Substituents on Electron Demand,
J. Am. Chem. Soc., 1988, 110, 6, 1797, https://doi.org/10.1021/ja00214a023
. [all data]
Harland and Thynne, 1970
Harland, P.; Thynne, J.C.J.,
Positive and negative ion formation in hexafluoroacetone by electron impact,
J. Phys. Chem., 1970, 74, 52. [all data]
Chabinyc and Brauman, 1999
Chabinyc, M.L.; Brauman, J.I.,
Hydrogen bond strength and acidity. Structural and energetic correlations for acetylides and alcohols,
J. Phys. Chem. A, 1999, 103, 46, 9163-9166, https://doi.org/10.1021/jp992852v
. [all data]
Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R.,
Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study.,
J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f
. [all data]
Illenberger, Baumgartel, et al., 1979
Illenberger, T.; Baumgartel, H.; Scheunemann, H.,
Negative Ion Formation in CF2Cl2, CF3Cl, and CFCl3 Following Low Energy (0-10eV) Impact with Near Monoenergetic Electrons,
Chem. Phys., 1979, 37, 1, 21, https://doi.org/10.1016/0301-0104(79)80003-8
. [all data]
Bartmess and Griffiths, 1990
Bartmess, J.E.; Griffiths, S.S.,
Tautomerization Energetics of Benzoannelated Toluenes,
J. Am. Chem. Soc., 1990, 112, 8, 2932, https://doi.org/10.1021/ja00164a014
. [all data]
Zhang, Bordwell, et al., 1993
Zhang, X.M.; Bordwell, F.G.; Bares, J.E.; Cheng, J.P.; Petrie, B.C.,
Homolytic Bond Dissociation Energies of the Acidic C-H Bonds in alpha-Substituted and 10-Substituted 9-Methylanthracenes and Their Related Radical Anions,
J. Org. Chem., 1993, 58, 11, 3051, https://doi.org/10.1021/jo00063a025
. [all data]
Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B.,
Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria,
J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032
. [all data]
Decouzon, Exner, et al., 1996
Decouzon, M.; Exner, O.; Gal, J.-F.; Maria, P.-C.,
Non-classical Buttressing Effect: Gas-phase Ionization of Some Methyl Substituted Benzoic Acids,
J. Chem. Soc. Perkin Trans., 1996, 2, 4, 475, https://doi.org/10.1039/p29960000475
. [all data]
Rackwitz, Feldman, et al., 1977
Rackwitz, R.; Feldman, D.; Kaiser, H.J.; Heincke, E.,
Photodetachment bei einigen zweiatomigen negativen hydridionen: BeH-, MgH-, CaH-, ZnH-, PH-, AsH-,
Z. Naturforsch. A:, 1977, 32, 594. [all data]
Chase Jr., Davies, et al., 1985
Chase Jr.; Davies, C.A.; Downey Jr.; Frurip, D.J.; McDonald, R.A.; Syverud, A.N.,
JANAF Thermochemical Tables (Third Edition),
J. Phys. Chem. Ref. Data, Suppl. 1, 1985, 14. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Lee, Dyke, et al., 1998
Lee, E.P.F.; Dyke, J.M.; Mayhew, C.A.,
Study of the OH-+CH2F2 reaction by selected ion flow tube experiments and ab initio calculations,
J. Phys. Chem. A, 1998, 102, 43, 8349-8354, https://doi.org/10.1021/jp982224y
. [all data]
Sullivan, 1977
Sullivan, S.A.,
Thesis, Cal. Inst. Tech. thesis,, 1977. [all data]
Arnold, Bradforth, et al., 1991
Arnold, D.W.; Bradforth, S.E.; Kitsopoulos, T.N.; Neumark, D.M.,
Vibrationally Resolved Spectra of C2-C11 by Anion Photoelectron Spectroscopy,
J. Chem. Phys., 1991, 95, 12, 8753, https://doi.org/10.1063/1.461211
. [all data]
Schiff and Bohme, 1975
Schiff, H.I.; Bohme, D.K.,
Flowing afterglow studies at York University,
Int. J. Mass Spectrom. Ion Phys., 1975, 16, 167. [all data]
Kleingeld and Nibbering, 1984
Kleingeld, J.C.; Nibbering, N.M.M.,
Negative Ion/Molecule Cycloaddition Reactions of 2-Methylpropenal in the Gas Phase,
Recl. Trav. Chim. Pays-Bas, 1984, 103, 3, 87, https://doi.org/10.1002/recl.19841030303
. [all data]
Norrman and McMahon, 1999
Norrman, K.; McMahon, T.B.,
Intramolecular solvation of carboxylate anions in the gas phase,
J. Phys. Chem. A, 1999, 103, 35, 7008-7016, https://doi.org/10.1021/jp9908202
. [all data]
Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P.,
Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria,
Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092
. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R.,
Relative Gas-Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1984, 106, 4051. [all data]
Downard, Bowie, et al., 1992
Downard, K.M.; Bowie, J.H.; O'Hair, R.A.J.; Krempp, M.; DePuy, C.H.,
Gas Phase Reactions of the Methylsulfinyl and Methyldisulfide Anions,
Int. J. Mass Spectrom. Ion Proc., 1992, 120, 3, 217, https://doi.org/10.1016/0168-1176(92)85050-A
. [all data]
Moran and Ellison, 1988
Moran, S.; Ellison, G.B.,
Photoelectron Spectroscopy of Sulfur Ions,
J. Phys. Chem., 1988, 92, 7, 1794, https://doi.org/10.1021/j100318a021
. [all data]
Alconcel and Continetti, 2002
Alconcel, L.S.; Continetti, R.E.,
Dissociation dynamics and stability of cyclopentoxy and cyclopentoxide,
Chem. Phys. Lett., 2002, 366, 5-6, 642-649, https://doi.org/10.1016/S0009-2614(02)01633-0
. [all data]
Garver, Yang, et al., 2011
Garver, J.M.; Yang, Z.B.; Kato, S.; Wren, S.W.; Vogelhuber, K.M.; Lineberger, W.C.; Bierbaum, V.M.,
Gas Phase Reactions of 1,3,5-Triazine: Proton Transfer, Hydride Transfer, and Anionic sigma-Adduct Formation,
J. Am. Soc. Mass Spectrom., 2011, 22, 7, 1260-1272, https://doi.org/10.1007/s13361-011-0133-9
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Garver, J.M.; Kato, S.; Sheps, L.; Bierbaum, V.M.; Lineberger, W.C.,
C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines,
J. Am. Chem. Soc., 2012, 134, 15, 6584-6595, https://doi.org/10.1021/ja209566q
. [all data]
Brinkman, Berger, et al., 1994
Brinkman, E.A.; Berger, S.; Brauman, J.I.,
alpha-Silyl-substituent stabilization of carbanions and silyl anions,
J. Am. Chem. Soc., 1994, 116, 18, 8304, https://doi.org/10.1021/ja00097a042
. [all data]
Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H.,
Gas-Phase Acidities of Methylsilanes: C-H versus Si-H,
Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011
. [all data]
Schafman and Wenthold, 2007
Schafman, B.S.; Wenthold, P.G.,
Regioselectivity of pyridine deprotonation in the gas phase,
J. Org. Chem., 2007, 72, 5, 1645-1651, https://doi.org/10.1021/jo062117x
. [all data]
Breuker, Knochenmuss, et al., 1999
Breuker, K.; Knochenmuss, R.; Zenobi, R.,
Gas-phase basicities of deprotonated matrix-assisted laser desorption/ionization matrix molecules,
Int. J. Mass Spectrom., 1999, 184, 1, 25-38, https://doi.org/10.1016/S1387-3806(98)14200-8
. [all data]
Grimm and Bartmess, 1992
Grimm, D.T.; Bartmess, J.E.,
The Intrinsic (Gas Phase) Basicity of some Anions Commonly Used in Condensed-Phase Synthesis,
J. Am. Chem. Soc., 1992, 114, 4, 1227, https://doi.org/10.1021/ja00030a016
. [all data]
Damrauer, Simon, et al., 1991
Damrauer, R.; Simon, R.; Krempp, M.,
Effect of Substituents on the Gas-Phase Acidity of Silanols,
J. Am. Chem. Soc., 1991, 113, 12, 4431, https://doi.org/10.1021/ja00012a009
. [all data]
McDonald, Chowdhury, et al., 1987
McDonald, R.M.; Chowdhury, A.K.; Gung, W.Y.; DeWitt, K.D.,
Nucleophilic Reactivity in Anionic Ion-Molecule Reactions
in Nucleophilicity, Harris, J.M, McManus, S.P. Eds., Amer. Chem. Soc, 1987. [all data]
Anderson, DePuy, et al., 1984
Anderson, D.R.; DePuy, C.H.; Filley, J.; Bierbaum, V.M.,
Gas Phase Chemistry of Trimethyl Phosphite,
J. Am. Chem. Soc., 1984, 106, 22, 6513, https://doi.org/10.1021/ja00334a009
. [all data]
Graul and Squires, 1988
Graul, S.T.; Squires, R.R.,
On the Existence of Alkyl Carbanions in the Gas Phase,
J. Am. Chem. Soc., 1988, 110, 2, 607, https://doi.org/10.1021/ja00210a054
. [all data]
DePuy, Grabowski, et al., 1985
DePuy, C.H.; Grabowski, J.J.; Bierbaum, V.M.; Ingemann, S.; Nibbering, N.M.M.,
Gas-phase reactions of anions with methyl formate and N,N-dimethylformamide,
J. Am. Chem. Soc., 1985, 107, 1093. [all data]
Kroeker and Kass, 1990
Kroeker, R.L.; Kass, S.R.,
Diazirinyl Anion: A Cyclic 4-pi Electron System,
J. Am. Chem. Soc., 1990, 112, 24, 9024, https://doi.org/10.1021/ja00180a082
. [all data]
Srivastava, Uy, et al., 1974
Srivastava, R.D.; Uy, O.M.; Farber, M.,
Experimental determination of heats of formation of negative ions and electron affinities of several boron and aluminum fluorides,
J. Chem. Soc. Faraday Trans. 1, 1974, 70, 1033. [all data]
Damrauer, DePuy, et al., 1986
Damrauer, R.; DePuy, C.H.; Davidson, I.M.T.; Hughes, K.J.,
Gas phase ion chemistry of dimethylsilylene,
Organometallics, 1986, 5, 2054. [all data]
Decouzon, Exner, et al., 1990
Decouzon, M.; Exner, O.; Gal, J.-F.; Maria, P.-C.,
The Gas-Phase Acidity and the Acidic Site of Acetohydroxamic Acid: an FT-ICR Study,
J. Org. Chem., 1990, 55, 13, 3980, https://doi.org/10.1021/jo00300a007
. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Farid and McMahon, 1980
Farid, R.; McMahon, T.B.,
The gas phase acidities of fluorinated acetones. An ICR investigation of the role of fluorine substituents in the stabilization of planar carbanions,
Can. J. Chem., 1980, 58, 2307. [all data]
Koppel, Pihl, et al., 1994
Koppel, I.A.; Pihl, V.; Koppel, I.A.; Anvia, F.; Taft, R.W.,
Thermodynamic acidity of (CF3)3CH and 1H-undecafluorobicyclo[2.2.1]heptane: The concept of anionic (fluorine) hyperconjugation,
J. Am. Chem. Soc., 1994, 116, 19, 8654, https://doi.org/10.1021/ja00098a027
. [all data]
Burk, Koppel, et al., 2000
Burk, P.; Koppel, I.A.; Rummel, A.; Trummal, A.,
Can O-H acid be more acidic than its S-H analog? A G2 study of fluoromethanols and fluoromethanethiols,
J. Phys. Chem. A, 2000, 104, 7, 1602-1607, https://doi.org/10.1021/jp993487a
. [all data]
Kass, Guo, et al., 1990
Kass, S.R.; Guo, H.-Z.; Dahlke, G.D.,
The Thiomethyl Anion: Formation, Reactivity, and Thermodynamic Properties,
J. Am. Soc. Mass Spectrom., 1990, 1, 5, 366, https://doi.org/10.1016/1044-0305(90)85016-F
. [all data]
McIver Jr. and Fukuda, 1982
McIver Jr.; Fukuda, E.K.,
Equilibrium Electron Affinities,
Lec. Notes in Chem., 1982, 31, 165. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Broadus and Kass, 1999
Broadus, K.M.; Kass, S.R.,
Benzocyclobutenone enolate: an anion with an antiaromatic resonance structure,
J. Chem. Soc. Perkin Trans., 1999, 2, 11, 2389-2396, https://doi.org/10.1039/a905868k
. [all data]
Adcock, Baran, et al., 2005
Adcock, W.; Baran, Y.; Filippi, A.; Speranza, M.; Trout, N.A.,
Polar substituent effects in the bicyclo[1.1.1]pentane ring system: Acidities of 3-substituted bicyclo[1.1.1]pentane-1-carboxylic acids,
J. Org. Chem., 2005, 70, 3, 1029-1034, https://doi.org/10.1021/jo040236b
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.