Hydrogen cation


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar26.040cal/mol*KReviewChase, 1998Data last reviewed in March, 1982

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Fluorine anion + Hydrogen cation = hydrogen fluoride

By formula: F- + H+ = HF

Quantity Value Units Method Reference Comment
Δr372. ± 1.kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr365.67 ± 0.18kcal/molH-TSBlondel, Delsart, et al., 2001gas phase; Given: 3.4011895(25) eV, or 27432.446(19) cm-1, or 78.433266(577) kcal/mol
Δr365.53kcal/molH-TSMartin and Hepburn, 2000gas phase; Given: 371.334±0.003 kcal/mol (corr to 298K with data from Wagman, Evans, et al., 1982).H(0K)=370.422±0.003
Δr365.67 ± 0.18kcal/molH-TSBlondel, Cacciani, et al., 1989gas phase; Reported: 3.401190±0.000004 eV. acidity includes 0.9 kcal 0 to 298 K correction.
Δr365.5 ± 2.0kcal/molIMREBierbaum, Schmidt, et al., 1981gas phase
Δr359.40kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCl3-; ; ΔS(EA)=5.0

phenoxide anion + Hydrogen cation = Phenol

By formula: C6H5O- + H+ = C6H6O

Quantity Value Units Method Reference Comment
Δr349. ± 2.kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr342.3 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Shiner, Vorner, et al., 1986: tautomer acidities ΔHacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale
Δr340.8 ± 1.9kcal/molCIDCAngel and Ervin, 2004gas phase
Δr343.4 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Δr>341.5 ± 1.8kcal/molH-TSRichardson, Stephenson, et al., 1975gas phase

C2H- + Hydrogen cation = Acetylene

By formula: C2H- + H+ = C2H2

Quantity Value Units Method Reference Comment
Δr379. ± 5.kcal/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr370. ± 5.kcal/molAVGN/AAverage of 7 values; Individual data points

CF3O- + Hydrogen cation = Carbonic difluoride

By formula: CF3O- + H+ = CF2O

Quantity Value Units Method Reference Comment
Δr329.8 ± 2.0kcal/molG+TSHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr347.5 ± 1.9kcal/molG+TSTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr<341.9 ± 1.8kcal/molD-EAHuey, Dunlea, et al., 1996gas phase; EA > NO3
Δr335.83kcal/molAcidLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Quantity Value Units Method Reference Comment
Δr323.0 ± 1.6kcal/molIMRBHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr340.7 ± 1.5kcal/molIMRBTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr329.0 ± 1.2kcal/molH-TSLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.

CH3O- + Hydrogen cation = Methyl Alcohol

By formula: CH3O- + H+ = CH4O

Quantity Value Units Method Reference Comment
Δr382. ± 2.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr376.02 ± 0.62kcal/molH-TSNee, Osterwalder, et al., 2006gas phase
Δr376.04 ± 0.55kcal/molH-TSOsborn, Leahy, et al., 1998gas phase
Δr374.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale
Δr374.6 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr375.10 ± 0.60kcal/molTDEqMeot-ner and Sieck, 1986gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O

HS- + Hydrogen cation = Hydrogen sulfide

By formula: HS- + H+ = H2S

Quantity Value Units Method Reference Comment
Δr351.4 ± 0.7kcal/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr344.4 ± 3.0kcal/molH-TSRempala and Ervin, 2000gas phase
Δr344.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr344.90 ± 0.10kcal/molH-TSShiell, Hu, et al., 1900gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05
Δr345.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Δr342.30kcal/molN/ACheck, Faust, et al., 2001gas phase; MnO2-(t); ; ΔS(EA)=5.4

H2P- + Hydrogen cation = Phosphine

By formula: H2P- + H+ = H3P

Quantity Value Units Method Reference Comment
Δr363.8 ± 1.5kcal/molD-EAErvin and Lineberger, 2005gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84
Δr370.8 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale
Δr364.3 ± 4.6kcal/molEIAEHalmann and Platzner, 1969gas phase
Δr<366.6 ± 4.6kcal/molEIAEEbinghaus, Kraus, et al., 1964gas phase
Δr365.60kcal/molN/ACheck, Faust, et al., 2001gas phase; MnF5-(q); ; ΔS(EA)=2.9
Quantity Value Units Method Reference Comment
Δr356.4 ± 1.6kcal/molH-TSErvin and Lineberger, 2005gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84
Δr363.4 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale
Δr358.70kcal/molN/ACheck, Faust, et al., 2001gas phase; MnF5-(q); ; ΔS(EA)=2.9

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Δr401.22 ± 0.50kcal/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale
Δr401.16 ± 0.21kcal/molD-EAGunion, Gilles, et al., 1992gas phase
Δr400.7 ± 2.5kcal/molTDEqMeot-ner and Sieck, 1986gas phase
Δr401. ± 10.kcal/molCIDTGraul and Squires, 1990gas phase
Δr398.0 ± 5.6kcal/molG+TSBohme and Young, 1971gas phase
Quantity Value Units Method Reference Comment
Δr392.40 ± 0.40kcal/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale
Δr390.9 ± 2.0kcal/molTDEqMeot-ner and Sieck, 1986gas phase
Δr390.1 ± 6.5kcal/molIMRBBartmess and McIver Jr., 1979gas phase
Δr389.2 ± 5.5kcal/molIMRBBohme and Young, 1971gas phase

H3Si- + Hydrogen cation = Silane

By formula: H3Si- + H+ = H4Si

Quantity Value Units Method Reference Comment
Δr373.9 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Δr372.9 ± 2.1kcal/molG+TSWetzel, Salomon, et al., 1989gas phase; value altered from reference due to change in acidity scale
Δr372.80 ± 0.84kcal/molD-EANimlos and Ellison, 1986gas phase
Δr372.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr373.90kcal/molN/ACheck, Faust, et al., 2001gas phase; MnS-(t); ; ΔS(EA)=5.7
Quantity Value Units Method Reference Comment
Δr365.7 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Δr364.7 ± 2.0kcal/molIMREWetzel, Salomon, et al., 1989gas phase; value altered from reference due to change in acidity scale
Δr364.58 ± 0.94kcal/molH-TSNimlos and Ellison, 1986gas phase
Δr363.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr366.40kcal/molN/ACheck, Faust, et al., 2001gas phase; MnS-(t); ; ΔS(EA)=5.7

C6H4F- + Hydrogen cation = Benzene, fluoro-

By formula: C6H4F- + H+ = C6H5F

Quantity Value Units Method Reference Comment
Δr386.8 ± 2.1kcal/molG+TSBuker, Nibbering, et al., 1997gas phase
Δr387.3 ± 2.1kcal/molG+TSAndrade and Riveros, 1996gas phase
Δr387.2 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr387.2 ± 2.5kcal/molBranWenthold and Squires, 1995, 2gas phase; By HO- cleavage of substituted silanes
Δr387.2 ± 5.4kcal/molG+TSBriscese and Riveros, 1975gas phase
Quantity Value Units Method Reference Comment
Δr378.6 ± 2.0kcal/molIMREBuker, Nibbering, et al., 1997gas phase
Δr379.1 ± 2.0kcal/molIMREAndrade and Riveros, 1996gas phase
Δr378.9 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr379.0 ± 2.6kcal/molH-TSWenthold and Squires, 1995, 2gas phase; By HO- cleavage of substituted silanes
Δr379.0 ± 5.3kcal/molIMRBBriscese and Riveros, 1975gas phase

FO3S- + Hydrogen cation = fluorosulphuric acid

By formula: FO3S- + H+ = HFO3S

Quantity Value Units Method Reference Comment
Δr307.1 ± 2.6kcal/molG+TSViggiano, Henchman, et al., 1992gas phase
Δr311.11kcal/molAcidLarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Δr<313.6 ± 2.0kcal/molEIAEAdams, Smith, et al., 1986gas phase; From FSO3H (AP 0eV)
Quantity Value Units Method Reference Comment
Δr300.0 ± 2.5kcal/molIMRBViggiano, Henchman, et al., 1992gas phase
Δr304.02 ± 0.30kcal/molH-TSLarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Δr<306.5 ± 3.0kcal/molH-TSAdams, Smith, et al., 1986gas phase; From FSO3H (AP 0eV)

C3H5- + Hydrogen cation = Cyclopropane

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr410. ± 3.kcal/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr401. ± 3.kcal/molAVGN/AAverage of 3 out of 6 values; Individual data points

HO4S- + Hydrogen cation = Sulfuric Acid

By formula: HO4S- + H+ = H2O4S

Quantity Value Units Method Reference Comment
Δr309.6 ± 5.4kcal/molD-EAWang, Nicholas, et al., 2000gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106
Δr309.6 ± 2.6kcal/molG+TSViggiano, Henchman, et al., 1992gas phase
Δr316.80kcal/molLattHouse Jr. and Kemper, 1987gas phase; From lattice energy of NH4HSO4, with new PA(NH3)
Δr<315.40kcal/molG+TSVigiano, Perry, et al., 1980gas phase; I- + H2SO4 ->.
Δr<313.6 ± 2.0kcal/molEIAEAdams, Smith, et al., 1986gas phase; From H2SO4 (AP 0eV)
Quantity Value Units Method Reference Comment
Δr302.3 ± 5.5kcal/molH-TSWang, Nicholas, et al., 2000gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106
Δr302.3 ± 2.5kcal/molIMRBViggiano, Henchman, et al., 1992gas phase
Δr<308.00kcal/molIMRBVigiano, Perry, et al., 1980gas phase; I- + H2SO4 ->.
Δr<306.2 ± 2.3kcal/molH-TSAdams, Smith, et al., 1986gas phase; From H2SO4 (AP 0eV)

F2N- + Hydrogen cation = Difluoramine

By formula: F2N- + H+ = HF2N

Quantity Value Units Method Reference Comment
Δr371.0 ± 2.1kcal/molG+TSKoppel, Taft, et al., 1994gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns
Δr360.0 ± 2.1kcal/molIMREKoppel, Pikver, et al., 1981gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore.
Δr365.7 ± 3.5kcal/molD-EARuckhaberle, Lehmann, et al., 1997gas phase
Quantity Value Units Method Reference Comment
Δr363.3 ± 2.0kcal/molIMREKoppel, Taft, et al., 1994gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns
Δr352.2 ± 2.0kcal/molH-TSKoppel, Pikver, et al., 1981gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore.

C6H7Si- + Hydrogen cation = Silane, phenyl-

By formula: C6H7Si- + H+ = C6H8Si

Quantity Value Units Method Reference Comment
Δr369.2 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Δr368.1 ± 2.1kcal/molG+TSWetzel, Salomon, et al., 1989gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale
Δr368.7 ± 3.0kcal/molD-EAWetzel, Salomon, et al., 1989gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol
Δr370.7 ± 4.1kcal/molG+TSDamrauer, Kass, et al., 1988gas phase; Between HF and acetone
Quantity Value Units Method Reference Comment
Δr362.1 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Δr361.0 ± 2.0kcal/molIMREWetzel, Salomon, et al., 1989gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale
Δr361.5 ± 3.1kcal/molH-TSWetzel, Salomon, et al., 1989gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol
Δr363.6 ± 4.0kcal/molIMRBDamrauer, Kass, et al., 1988gas phase; Between HF and acetone

CF3- + Hydrogen cation = Fluoroform

By formula: CF3- + H+ = CHF3

Quantity Value Units Method Reference Comment
Δr378.0 ± 1.4kcal/molD-EADeyerl, Alconcel, et al., 2001gas phase; Adiabatic EA, from vibrational structure of spectrum
Δr377.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give ΔHacid=379.9, ΔGacid=372.0; value altered from reference due to change in acidity scale
Δr376.0 ± 4.5kcal/molCIDTGraul and Squires, 1990gas phase
Quantity Value Units Method Reference Comment
Δr370.3 ± 1.5kcal/molH-TSDeyerl, Alconcel, et al., 2001gas phase; Adiabatic EA, from vibrational structure of spectrum
Δr369.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give ΔHacid=379.9, ΔGacid=372.0; value altered from reference due to change in acidity scale

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr366.42 ± 0.81kcal/molD-EAMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1)
Δr365.8 ± 2.2kcal/molG+TSBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale
Δr366.5 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr359.6 ± 1.2kcal/molH-TSMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1)
Δr359.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale
Δr359.7 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase

HCO2 anion + Hydrogen cation = Formic acid

By formula: CHO2- + H+ = CH2O2

Quantity Value Units Method Reference Comment
Δr346.2 ± 1.2kcal/molD-EAKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol
Δr345.3 ± 2.2kcal/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr345.4 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr345.2 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase
Δr340.1 ± 4.6kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr339.2 ± 1.5kcal/molH-TSKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol
Δr338.3 ± 2.0kcal/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr338.4 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr338.2 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase

H3Ge- + Hydrogen cation = Germane

By formula: H3Ge- + H+ = H4Ge

Quantity Value Units Method Reference Comment
Δr358.7 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Δr358.9 ± 1.3kcal/molG+TSDecouzon, Gal, et al., 1993gas phase; The neutral acid ΔHf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997
Δr>356.0 ± 2.7kcal/molD-EAReed and Brauman, 1974gas phase
Δr362.00kcal/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)-(q); ; ΔS(EA)=5.0
Quantity Value Units Method Reference Comment
Δr350.6 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Δr350.8 ± 1.2kcal/molIMREDecouzon, Gal, et al., 1993gas phase; The neutral acid ΔHf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997
Δr>347.9 ± 2.8kcal/molH-TSReed and Brauman, 1974gas phase
Δr353.90kcal/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)-(q); ; ΔS(EA)=5.0

CH5Si- + Hydrogen cation = Silane, methyl-

By formula: CH5Si- + H+ = CH6Si

Quantity Value Units Method Reference Comment
Δr377.4 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Δr378.0 ± 3.0kcal/molD-EAWetzel, Salomon, et al., 1989gas phase
Δr378.0 ± 2.1kcal/molG+TSWetzel, Salomon, et al., 1989gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale
Δr385.4 ± 4.1kcal/molG+TSDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.
Quantity Value Units Method Reference Comment
Δr369.0 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Δr369.6 ± 3.1kcal/molH-TSWetzel, Salomon, et al., 1989gas phase
Δr369.6 ± 2.0kcal/molIMREWetzel, Salomon, et al., 1989gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale
Δr377.0 ± 4.0kcal/molIMRBDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.

C3HF6- + Hydrogen cation = Propane, 1,1,1,3,3,3-hexafluoro-

By formula: C3HF6- + H+ = C3H2F6

Quantity Value Units Method Reference Comment
Δr363.7 ± 4.1kcal/molG+TSMcDonald, Chowdhury, et al., 1984gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale
Δr351.6 ± 2.2kcal/molG+TSKoppel, Taft, et al., 1994gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF?
Quantity Value Units Method Reference Comment
Δr356.0 ± 4.0kcal/molIMRBMcDonald, Chowdhury, et al., 1984gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale
Δr343.9 ± 2.0kcal/molIMREKoppel, Taft, et al., 1994gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF?

C5H9O2- + Hydrogen cation = 2H-Pyran-2-ol, tetrahydro-

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Δr368.0 ± 3.2kcal/molD-EABaer, Brinkman, et al., 1991gas phase; Structure: cyclic H-bonded 5-hydroxypentanal enolate
Δr357.6 ± 2.1kcal/molG+TSBaer, Brinkman, et al., 1991gas phase; For deprotonation of neutral acetal.
Δr358.9 ± 3.1kcal/molG+TSBartmess, Hays, et al., 1981gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization.
Quantity Value Units Method Reference Comment
Δr351.0 ± 2.0kcal/molIMRBBaer, Brinkman, et al., 1991gas phase; For deprotonation of neutral acetal.
Δr347.0 ± 3.0kcal/molIMRBBaer, Brinkman, et al., 1991gas phase; For reprotonation of anion: structure is cyclic H-bonded cyclic enolate
Δr352.3 ± 3.0kcal/molIMRBBartmess, Hays, et al., 1981gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization.

H2As- + Hydrogen cation = Arsine

By formula: H2As- + H+ = H3As

Quantity Value Units Method Reference Comment
Δr357.5 ± 2.1kcal/molG+TSGal, Maria, et al., 1989gas phase
Δr357.8 ± 3.1kcal/molD-EASmyth and Brauman, 1972gas phase
Δr361.9 ± 6.1kcal/molG+TSWyatt, Holtz, et al., 1974gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale
Δr<359.7 ± 4.6kcal/molEIAEEbinghaus, Kraus, et al., 1964gas phase; From AsH3
Δr359.00kcal/molN/ACheck, Faust, et al., 2001gas phase; CrOO-(q); ; ΔS(EA)=1.7
Quantity Value Units Method Reference Comment
Δr350.0 ± 2.0kcal/molIMREGal, Maria, et al., 1989gas phase
Δr354.4 ± 6.0kcal/molIMRBWyatt, Holtz, et al., 1974gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale
Δr352.20kcal/molN/ACheck, Faust, et al., 2001gas phase; CrOO-(q); ; ΔS(EA)=1.7

C6H13O- + Hydrogen cation = 3,3-Dimethylbutane-2-ol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr371.9 ± 2.0kcal/molD-EAMihalick, Gatev, et al., 1996gas phase; Derived BDE: 103.3±2.8 kcal/mol
Δr371.4 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr371.1 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr365.1 ± 2.0kcal/molIMREClifford, Wenthold, et al., 1998gas phase
Δr365.3 ± 2.1kcal/molH-TSMihalick, Gatev, et al., 1996gas phase; Derived BDE: 103.3±2.8 kcal/mol
Δr364.8 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr364.5 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C3H3- + Hydrogen cation = Propyne

By formula: C3H3- + H+ = C3H4

Quantity Value Units Method Reference Comment
Δr380.3 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Δr381.8 ± 2.3kcal/molD-EARobinson, Polak, et al., 1995gas phase
Δr381.1 ± 2.1kcal/molG+TSRobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme
Δr381.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr372.6 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Δr373.4 ± 2.0kcal/molIMRERobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme
Δr373.3 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C7H7- + Hydrogen cation = Toluene

By formula: C7H7- + H+ = C7H8

Quantity Value Units Method Reference Comment
Δr382.33 ± 0.45kcal/molD-EAGunion, Gilles, et al., 1992gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA
Δr380.8 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr379.2 ± 2.1kcal/molG+TSGal, Decouzon, et al., 2001gas phase
Δr377.0 ± 3.5kcal/molCIDTGraul and Squires, 1990gas phase
Δr384.5 ± 7.1kcal/molG+TSBohme and Young, 1971gas phase
Quantity Value Units Method Reference Comment
Δr373.7 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr372.1 ± 2.0kcal/molIMREGal, Decouzon, et al., 2001gas phase
Δr377.4 ± 7.0kcal/molIMRBBohme and Young, 1971gas phase

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr391.10 ± 0.30kcal/molG+TSEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu
Δr390.5 ± 1.0kcal/molD-EAWenthold, Polak, et al., 1996gas phase
Δr390.7 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr390.25 ± 0.65kcal/molG+TSMackay, Lien, et al., 1978gas phase
Quantity Value Units Method Reference Comment
Δr383.80 ± 0.10kcal/molIMREEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu
Δr383.9 ± 1.1kcal/molH-TSWenthold, Polak, et al., 1996gas phase
Δr384.1 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr383.60 ± 0.50kcal/molIMREMackay, Lien, et al., 1978gas phase

C4H9O- + Hydrogen cation = 1-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr375.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr375.4 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr375.0 ± 2.9kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr368.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr368.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr368.4 ± 2.8kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C4H4N- + Hydrogen cation = 3-Butenenitrile

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Δr357.3 ± 3.0kcal/molG+TSLuna, Mo, et al., 2006gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH
Δr358.8 ± 3.1kcal/molG+TSChou, Dahlke, et al., 1993gas phase; Acid: CH2=CHCH2CN
Δr363.5 ± 5.1kcal/molG+TSDahlke and Kass, 1991gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain.
Quantity Value Units Method Reference Comment
Δr349.9 ± 3.0kcal/molIMRBLuna, Mo, et al., 2006gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH
Δr351.7 ± 3.0kcal/molIMRBChou, Dahlke, et al., 1993gas phase; Acid: CH2=CHCH2CN
Δr356.3 ± 5.0kcal/molIMRBDahlke and Kass, 1991gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain.
Δr<365.0 ± 2.0kcal/molIMRBDawson and Nibbering, 1980gas phase; Acid: CH2=CHCH2CN

C4H9O- + Hydrogen cation = 2-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr374.1 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr374.2 ± 2.1kcal/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale
Δr374.1 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr367.5 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr367.6 ± 2.0kcal/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale
Δr367.5 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

Chlorine anion + Hydrogen cation = Hydrogen chloride

By formula: Cl- + H+ = HCl

Quantity Value Units Method Reference Comment
Δr333.40kcal/molN/AMartin and Hepburn, 1998gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol
Δr333.6 ± 2.1kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr329.10kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; ΔS(EA)=5.0
Quantity Value Units Method Reference Comment
Δr328.10 ± 0.10kcal/molH-TSMartin and Hepburn, 1998gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol
Δr328.3 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr323.70kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; ΔS(EA)=5.0

C2H5O- + Hydrogen cation = Ethanol

By formula: C2H5O- + H+ = C2H6O

Quantity Value Units Method Reference Comment
Δr379.2 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase
Δr378.0 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr377.4 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr379.10 ± 0.10kcal/molCIDTDeTuri and Ervin, 1999gas phase
Quantity Value Units Method Reference Comment
Δr372.6 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase
Δr371.4 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr370.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C4H9O- + Hydrogen cation = 2-Propanol, 2-methyl-

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr374.7 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase
Δr374.6 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr376.00 ± 0.70kcal/molCIDTDeTuri and Ervin, 1999gas phase
Δr374.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr368.1 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase
Δr368.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr367.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C3H7O- + Hydrogen cation = Isopropyl Alcohol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr375.1 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase
Δr375.4 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr376.7 ± 1.0kcal/molCIDTDeTuri and Ervin, 1999gas phase
Δr375.7 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr368.5 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase
Δr368.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr369.1 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr407. ± 2.kcal/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr401.00 ± 0.50kcal/molIMREErvin, Gronert, et al., 1990gas phase
Δr399.1 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase
Δr398.6 ± 4.9kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase
Δr>397.00kcal/molIMRBFroelicher, Freiser, et al., 1986gas phase

HSe- + Hydrogen cation = dihydrogen selenide

By formula: HSe- + H+ = H2Se

Quantity Value Units Method Reference Comment
Δr341.48 ± 0.70kcal/molD-EAStoneman and Larson, 1986gas phase; Wagman, Evans, et al., 1982 ΔHf(AH) = 7.1 kcal/mol
Δr342.7 ± 9.1kcal/molG+TSDixon, Holtz, et al., 1972gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale
Δr340.50kcal/molN/ACheck, Faust, et al., 2001gas phase; MnO-(t); ; ΔS(EA)=5.5
Quantity Value Units Method Reference Comment
Δr335.19 ± 0.80kcal/molH-TSStoneman and Larson, 1986gas phase; Wagman, Evans, et al., 1982 ΔHf(AH) = 7.1 kcal/mol
Δr336.4 ± 9.0kcal/molIMRBDixon, Holtz, et al., 1972gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale
Δr334.20kcal/molN/ACheck, Faust, et al., 2001gas phase; MnO-(t); ; ΔS(EA)=5.5

CHO3- + Hydrogen cation = Methaneperoxoic acid

By formula: CHO3- + H+ = CH2O3

Quantity Value Units Method Reference Comment
Δr350.6 ± 3.4kcal/molG+TSVillano, Eyet, et al., 2010gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid
Δr<370.6 ± 2.2kcal/molG+TSBowie, DePuy, et al., 1986gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m
Quantity Value Units Method Reference Comment
Δr344.0 ± 3.3kcal/molIMRBVillano, Eyet, et al., 2010gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid
Δr<364.0 ± 2.0kcal/molIMRBBowie, DePuy, et al., 1986gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m

C5H7O2- + Hydrogen cation = Acetylacetone

By formula: C5H7O2- + H+ = C5H8O2

Quantity Value Units Method Reference Comment
Δr343.8 ± 2.1kcal/molG+TSTaft and Bordwell, 1988gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952)
Δr343.7 ± 2.3kcal/molG+TSCumming and Kebarle, 1978gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999
Quantity Value Units Method Reference Comment
Δr336.7 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952)
Δr336.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999

C2H2N- + Hydrogen cation = Acetonitrile

By formula: C2H2N- + H+ = C2H3N

Quantity Value Units Method Reference Comment
Δr372.9 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr369.0 ± 4.5kcal/molCIDTGraul and Squires, 1990gas phase
Δr373.3 ± 2.6kcal/molG+TSCumming and Kebarle, 1978gas phase
Δr374.8 ± 2.0kcal/molD-EAZimmerman and Brauman, 1977gas phase
Δr366.6 ± 4.6kcal/molEIAEHeni and Illenberger, 1986gas phase; From MeCN
Quantity Value Units Method Reference Comment
Δr365.2 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr365.6 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Δr367.2 ± 2.1kcal/molH-TSZimmerman and Brauman, 1977gas phase

MeCO2 anion + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr348.2 ± 1.4kcal/molCIDCAngel and Ervin, 2006gas phase
Δr348.1 ± 2.2kcal/molG+TSTaft and Topsom, 1987gas phase
Δr348.6 ± 2.1kcal/molG+TSCumming and Kebarle, 1978gas phase
Δr348.7 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr343.20 ± 0.70kcal/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr341.1 ± 2.0kcal/molIMRETaft and Topsom, 1987gas phase
Δr341.5 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase
Δr341.7 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale

C3H3- + Hydrogen cation = Allene

By formula: C3H3- + H+ = C3H4

Quantity Value Units Method Reference Comment
Δr380.0 ± 2.0kcal/molD-EARobinson, Polak, et al., 1995gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.
Δr381.4 ± 3.1kcal/molG+TSRobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization
Δr380.6 ± 2.1kcal/molD-EAOakes and Ellison, 1983gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.
Quantity Value Units Method Reference Comment
Δr372.8 ± 3.0kcal/molIMRERobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization
Δr372.0 ± 2.2kcal/molH-TSOakes and Ellison, 1983gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.

O3P- + Hydrogen cation = metaphosphoric acid

By formula: O3P- + H+ = HPO3

Quantity Value Units Method Reference Comment
Δr310.8 ± 4.2kcal/molD-EAWang and Wang, 1999gas phase
Δr310.8 ± 2.6kcal/molG+TSViggiano, Henchman, et al., 1992gas phase
Δr310.7 ± 3.6kcal/molEndoViggiano, Morris, et al., 1991gas phase
Δr<316.3 ± 3.1kcal/molG+TSHenchman, Viggiano, et al., 1985gas phase; The neutral thermochemistry appears to be in conflict with computational values
Quantity Value Units Method Reference Comment
Δr303.5 ± 4.3kcal/molH-TSWang and Wang, 1999gas phase
Δr303.5 ± 2.5kcal/molIMRBViggiano, Henchman, et al., 1992gas phase
Δr<309.0 ± 3.0kcal/molIMRBHenchman, Viggiano, et al., 1985gas phase; The neutral thermochemistry appears to be in conflict with computational values

CHCl2- + Hydrogen cation = Methylene chloride

By formula: CHCl2- + H+ = CH2Cl2

Quantity Value Units Method Reference Comment
Δr375.7 ± 2.2kcal/molG+TSBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol
Δr374.5 ± 3.1kcal/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr368.0 ± 2.0kcal/molIMREBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol
Δr369.00 ± 0.70kcal/molIMREPoutsma, Paulino, et al., 1997gas phase; relative to tBuOH at ΔGacid = 369.3
Δr366.8 ± 3.0kcal/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale

C7H7O- + Hydrogen cation = p-Cresol

By formula: C7H7O- + H+ = C7H8O

Quantity Value Units Method Reference Comment
Δr350.2 ± 2.1kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr350.2 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr351.6 ± 2.3kcal/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr343.4 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr343.4 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr344.7 ± 2.0kcal/molIMREKebarle and McMahon, 1977gas phase

benzoate anion + Hydrogen cation = Benzoic acid

By formula: C7H5O2- + H+ = C7H6O2

Quantity Value Units Method Reference Comment
Δr340.1 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr340.0 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder
Δr340.2 ± 2.2kcal/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Quantity Value Units Method Reference Comment
Δr333.0 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr332.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder
Δr333.1 ± 2.0kcal/molIMRECaldwell, Renneboog, et al., 1989gas phase

C11H9- + Hydrogen cation = Naphthalene, 1-methyl-

By formula: C11H9- + H+ = C11H10

Quantity Value Units Method Reference Comment
Δr374.0 ± 2.1kcal/molG+TSBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1
Δr370.7 ± 2.5kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Quantity Value Units Method Reference Comment
Δr365.8 ± 2.0kcal/molIMREBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1
Δr362.4 ± 2.0kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.

C6H13O- + Hydrogen cation = 1-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr374.0 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Δr374.1 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr373.1 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr367.4 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Δr367.5 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr366.5 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C7H15O- + Hydrogen cation = 1-Heptanol

By formula: C7H15O- + H+ = C7H16O

Quantity Value Units Method Reference Comment
Δr374.6 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Δr373.8 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr372.5 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr368.0 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Δr367.2 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr365.9 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C8H17O- + Hydrogen cation = 1-Octanol

By formula: C8H17O- + H+ = C8H18O

Quantity Value Units Method Reference Comment
Δr374.3 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Δr373.5 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr371.8 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr367.7 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Δr366.9 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr365.2 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C9H19O- + Hydrogen cation = 1-Nonanol

By formula: C9H19O- + H+ = C9H20O

Quantity Value Units Method Reference Comment
Δr374.6 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase
Δr373.2 ± 3.0kcal/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr371.2 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr368.0 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase
Δr366.6 ± 3.1kcal/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr364.6 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Blondel, Delsart, et al., 2001
Blondel, C.; Delsart, C.; Goldfarb, F., Electron spectrometry at the mu eV level and the electron affinities of Si and F, J. Phys. B: Atom. Mol. Opt. Phys., 2001, 34, 9, L281-L288, https://doi.org/10.1088/0953-4075/34/9/101 . [all data]

Martin and Hepburn, 2000
Martin, J.D.D.; Hepburn, J.W., Faraday Disc. Chem. Soc., 2000, 115, 416. [all data]

Wagman, Evans, et al., 1982
Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties (NBS Tech Note 270), J. Phys. Chem. Ref. Data, Supl. 1, 1982, 11. [all data]

Blondel, Cacciani, et al., 1989
Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R., High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams, Phys. Rev. A, 1989, 40, 7, 3698, https://doi.org/10.1103/PhysRevA.40.3698 . [all data]

Bierbaum, Schmidt, et al., 1981
Bierbaum, V.M.; Schmidt, R.J.; DePuy, C.H.; Mead, R.H.; Schulz, P.A.; Lineberger, W.C., Reactions of carbanions with triplet and singlet molecular oxygen, J. Am. Chem. Soc., 1981, 103, 6262. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiner, Vorner, et al., 1986
Shiner, C.S.; Vorner, P.E.; Kass, S.R., Gas phase acidities and heats of formation of 2,4- and 2,5- cyclohexadien-1-one, the keto tautomers of phenol, J. Am. Chem. Soc., 1986, 108, 5699. [all data]

Capponi, Gut, et al., 1999
Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J., Ketonization equilibria of phenol in aqueous solution, Can. J. Chem., 1999, 77, 5-6, 605-613, https://doi.org/10.1139/v99-048 . [all data]

Angel and Ervin, 2004
Angel, L.A.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidity and O-H bond dissociation enthalpy of phenol, J. Phys. Chem. A, 2004, 108, 40, 8346-8352, https://doi.org/10.1021/jp0474529 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I., Photodetachment of electrons from phenoxides and thiophenoxide, J. Am. Chem. Soc., 1975, 97, 2967. [all data]

Huey, Dunlea, et al., 1996
Huey, L.G.; Dunlea, E.J.; Howard, C.J., Gas-Phase Acidity of CF3OH, J. Phys. Chem., 1996, 100, 16, 6504, https://doi.org/10.1021/jp953058m . [all data]

Segovia and Ventura, 1997
Segovia, M.; Ventura, O.N., Density functional and G2 study of the strength of the OH bond in CF3OH, Chem. Phys. Lett., 1997, 277, 5-6, 490-496, https://doi.org/10.1016/S0009-2614(97)00860-9 . [all data]

Burk, Koppel, et al., 2000
Burk, P.; Koppel, I.A.; Rummel, A.; Trummal, A., Can O-H acid be more acidic than its S-H analog? A G2 study of fluoromethanols and fluoromethanethiols, J. Phys. Chem. A, 2000, 104, 7, 1602-1607, https://doi.org/10.1021/jp993487a . [all data]

Chyall and Squires, 1996
Chyall, L.J.; Squires, R.R., The Proton Affinity and Absolute Heat of Formation of Trifluoromethanpl, J. Phys. Chem., 1996, 100, 16435. [all data]

Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F., Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids, J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M., Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H, J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016 . [all data]

Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W., A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule, J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H., High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-, Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609 . [all data]

Ervin and Lineberger, 2005
Ervin, K.M.; Lineberger, W.C., Photoelectron spectroscopy of phosphorus hydride anions, J. Chem. Phys., 2005, 122, 19, 194303, https://doi.org/10.1063/1.1881153 . [all data]

Curtiss, Raghavachari, et al., 1991
Curtiss, L.A.; Raghavachari, K.; Trucks, G.W.; Pople, J.A., Gaussian-2 Theory for Molecular Energies of First- and Second-row Compounds, J. Chem. Phys., 1991, 94, 11, 7221, https://doi.org/10.1063/1.460205 . [all data]

Ricca and Bauschlicher, 1998
Ricca, A.; Bauschlicher, C.W., Jr., Accurate Heats of Formation for PHn, PHn+, and PHn-, Chem. Phys. Lett., 1998, 285, 5-6, 455, https://doi.org/10.1016/S0009-2614(97)01468-1 . [all data]

Halmann and Platzner, 1969
Halmann, M.; Platzner, I., Negative Ions Produced by Electron Capture in Phosphine, J. Phys. Chem., 1969, 73, 12, 4376, https://doi.org/10.1021/j100846a062 . [all data]

Ebinghaus, Kraus, et al., 1964
Ebinghaus, H.; Kraus, K.; Neuert, H.; Muller-Duysing, W., Negative Ionen durch Elecktronenresonanzeinfang in PH3, AsH3, und SiH4, Z. Naturfor., 1964, 19A, 732. [all data]

Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R., The C-H bond energy of benzene, J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023 . [all data]

Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F., Anchoring the gas-phase acidity scale, J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n . [all data]

Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P., Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5, J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o . [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C., Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes, J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j . [all data]

Wetzel, Salomon, et al., 1989
Wetzel, D.M.; Salomon, K.E.; Berger, S.; Brauman, J.I., Gas-Phase Acidities of Organosilanes and Electron Affinities of Organosilyl Radicals, J. Am. Chem. Soc., 1989, 111, 11, 3835, https://doi.org/10.1021/ja00193a013 . [all data]

Nimlos and Ellison, 1986
Nimlos, M.R.; Ellison, G.B., Photoelectron spectroscopy of SiH3- and SiD3-, J. Am. Chem. Soc., 1986, 108, 6522. [all data]

Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M., Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution, Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3 . [all data]

Andrade and Riveros, 1996
Andrade, P.B.M.; Riveros, J.M., Relative Gas-phase Acidities of Fluoro- and Chlorobenzene, J. Mass Spectrom., 1996, 31, 7, 767, https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<767::AID-JMS345>3.0.CO;2-Q . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Wenthold and Squires, 1995, 2
Wenthold, P.G.; Squires, R.R., Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method, J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105 . [all data]

Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M., Gas phase nucleophilic reactions of aromatic systems, J. Am. Chem. Soc., 1975, 97, 230. [all data]

Viggiano, Henchman, et al., 1992
Viggiano, A.A.; Henchman, M.J.; Dale, F.; Deakyne, C.A.; Paulson, J.F., Gas-Phase Reactions of Weak Bronsted Bases I-, PO3-, HSO4-, FSO3-, and CF3SO3- with Strong Bronsted Acids H2SO4, FSO3H, and CF3SO3H - A Quantitative Study, J. Am. Chem. Soc., 1992, 114, 11, 4299, https://doi.org/10.1021/ja00037a039 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Adams, Smith, et al., 1986
Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J., Dissociative attachment reactions of electron with strong acid molecules, J. Chem. Phys., 1986, 84, 6728. [all data]

Wang, Nicholas, et al., 2000
Wang, X.B.; Nicholas, J.B.; Wang, L.S., Photoelectron spectroscopy and theoretical calculations of SO4- and HSO4-: Confirmation of high electron affinities of SO4 and HSO4, J. Phys. Chem. A, 2000, 104, 3, 504-508, https://doi.org/10.1021/jp992726r . [all data]

House Jr. and Kemper, 1987
House Jr.; Kemper, K.A., Proton Affinities of Sulfate and Bisulfate Ions, J. Thermal Anal., 1987, 32, 6, 1855, https://doi.org/10.1007/BF01913977 . [all data]

Vigiano, Perry, et al., 1980
Vigiano, A.A.; Perry, R.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., The role of H2SO4 in stratospheric negative ion chemistry, J. Geophys. Res., 1980, 85, 4551. [all data]

Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M., The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids, J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038 . [all data]

Koppel, Pikver, et al., 1981
Koppel, I.; Pikver, R.; Sugis, A.; Suurmaa, E.; Lippmaa, E., FTICR Study of Structure and Solvent Effects on Basicity of Some Anions in the Gas Phase, Org. Reac., 1981, 18, 3. [all data]

Ruckhaberle, Lehmann, et al., 1997
Ruckhaberle, N.; Lehmann, L.; Matejcik, S.; Illenberger, E.; Bouteiller, Y.; Periquet, V.; Museur, L.; Desfran, Free Electron Attachment and Rydberg Electron Transfer to NF3 Molecules and Clusters, J. Phys. Chem. A, 1997, 101, 51, 9942, https://doi.org/10.1021/jp972422+ . [all data]

Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H., Gas-Phase Acidities of Methylsilanes: C-H versus Si-H, Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011 . [all data]

Deyerl, Alconcel, et al., 2001
Deyerl, H.J.; Alconcel, L.S.; Continetti, R.E., Photodetachment imaging studies of the electron affinity of CF3, J. Phys. Chem. A, 2001, 105, 3, 552-557, https://doi.org/10.1021/jp003137k . [all data]

Paulino and Squires, 1991
Paulino, J.A.; Squires, R.R., Carbene Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements - The Heats of Formation of X1A1 CF2 and X1A1 CCl2, J. Am. Chem. Soc., 1991, 113, 15, 5573, https://doi.org/10.1021/ja00015a009 . [all data]

Mead, Lykke, et al., 1984
Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I., Spectroscopy and Dynamics of the Dipole-Bound State of Acetaldehyde Enolate., J. Chem. Phys., 1984, 81, 11, 4883., https://doi.org/10.1063/1.447515 . [all data]

Holmes and Lossing, 1982
Holmes, J.L.; Lossing, F.P., Heats of formation of the ionic and neutral enols of acetaldehyde and acetone, J. Am. Chem. Soc., 1982, 104, 2648. [all data]

Kim, Bradforth, et al., 1995
Kim, E.H.; Bradforth, S.E.; Arnold, D.W.; Metz, R.B.; Neumark, D.M., Study of HCO2 and DCO2 by Negative Ion Photoelectron Spectroscopy, J. Chem. Phys., 1995, 103, 18, 7801, https://doi.org/10.1063/1.470196 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Decouzon, Gal, et al., 1993
Decouzon, M.; Gal, J.F.; Gayraud, J.; Maria, P.C.; Vaglio, G.A.; Volpe, P., Fourier Transform-Ion Cyclotron Resonance Study of the Gas-Phase Acidities of Germane and Methylgermane - Bond Dissociation Energy of German, J. Am. Soc. Mass Spectrom., 1993, 4, 1, 54, https://doi.org/10.1016/1044-0305(93)85042-V . [all data]

Mayer, Gal, et al., 1997
Mayer, P.M.; Gal, J.-F.; Radom, L., The Heats of Formation, Gas-phase Acidities, and Related Thermochemical Properties of the Third-row Hydrides GeH4, AsH3, SeH2, and HBr from G2 ab initio Calculations, Int. J. Mass Spectrom. Ion Proc., 1997, 167/168, 689, https://doi.org/10.1016/S0168-1176(97)00127-4 . [all data]

Reed and Brauman, 1974
Reed, K.J.; Brauman, J.I., Photodetachment of electrons from Group IVa binary hydride anions: The electron affinities of the SiH3 and GeH3 radicals, J. Chem. Phys., 1974, 61, 4830. [all data]

McDonald, Chowdhury, et al., 1984
McDonald, R.N.; Chowdhury, A.K.; McGhee, W.D., Gas-Phase Generation of 1,1,1,3,3,3-Hexafluoroisopropylidene Anion Radical: Proton Affinity and Heat of Formation of (CF3)2C- and (CF3)2CH-, J. Am. Chem. Soc., 1984, 106, 15, 4112, https://doi.org/10.1021/ja00327a008 . [all data]

Baer, Brinkman, et al., 1991
Baer, S.; Brinkman, E.A.; Brauman, J.I., Hemiacetal Anions: A Model for Tetrahedral Reaction Intermediates, J. Am. Chem. Soc., 1991, 113, 3, 805, https://doi.org/10.1021/ja00003a012 . [all data]

Bartmess, Hays, et al., 1981
Bartmess, J.E.; Hays, R.L.; Caldwell, G., The Addition of Carbanions to Carbonyl Groups in the Gas Phase, J. Am. Chem. Soc., 1981, 103, 6, 1338, https://doi.org/10.1021/ja00396a006 . [all data]

Gal, Maria, et al., 1989
Gal, J.-F.; Maria, P.-C.; Decouzon, M., The Gas-Phase Acidity and Bond Dissociation Energies of Hydrogen Telluride, Int. J. Mass Spectrom. Ion Proc., 1989, 93, 1, 87, https://doi.org/10.1016/0168-1176(89)83076-9 . [all data]

Smyth and Brauman, 1972
Smyth, K.C.; Brauman, J.I., Photodetachment of electrons from amide and arsenide ions: The electron affinities of NH2 and AsH2., J. Chem. Phys., 1972, 56, 4620. [all data]

Wyatt, Holtz, et al., 1974
Wyatt, R.H.; Holtz, D.; McMahon, T.B.; Beauchamp, J.L., Acidity, basicity, and ion-molecule reactions of arsine in the gas phase by ICR spectroscopy, Inorg. Chem., 1974, 13, 1511. [all data]

Mihalick, Gatev, et al., 1996
Mihalick, J.E.; Gatev, G.G.; Brauman, J.I., Electron Photodetachment Spectroscopy of Solvated Anions: RO.HF- or ROH.F-?, J. Am. Chem. Soc., 1996, 118, 49, 12424, https://doi.org/10.1021/ja954202k . [all data]

Clifford, Wenthold, et al., 1998
Clifford, E.P.; Wenthold, P.G.; Gareyev, R.; Lineberger, W.C.; DePuy, C.H.; Bierbaum, V.M.; Ellison, G.B., Photoelectron spectroscopy, gas phase acidity, and thermochemistry of tert-butyl hydroperoxide: Mechanisms for the rearrangement of peroxyl radicals, J. Chem. Phys., 1998, 109, 23, 10293-10310, https://doi.org/10.1063/1.477725 . [all data]

Robinson, Polak, et al., 1995
Robinson, M.S.; Polak, M.L.; Bierbaum, V.M.; DePuy, C.H.; Lineberger, W.C., Experimental Studies of Allene, Methylacetylene, and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase Acidities, and Ion-Molecule Chemistry, J. Am. Chem. Soc., 1995, 117, 25, 6766, https://doi.org/10.1021/ja00130a017 . [all data]

Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C., Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions, J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o . [all data]

Ellison, Davico, et al., 1996
Ellison, G.B.; Davico, G.E.; Bierbaum, V.M.; DePuy, C.H., Thermochemistry of theb Benzyl and Allyl Radicals and Ions, Int. J. Mass Spectrom. Ion Proc., 1996, 156, 1-2, 109-131, https://doi.org/10.1016/S0168-1176(96)04383-2 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Mackay, Lien, et al., 1978
Mackay, G.I.; Lien, M.H.; Hopkinson, A.C.; Bohme, D.K., Experimental and theoretical studies of proton removal from propene, Can. J. Chem., 1978, 56, 131. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Luna, Mo, et al., 2006
Luna, A.; Mo, O.; Yanez, M.; Gal, J.F.; Maria, P.C.; Guillemin, J.C., Gas-phase protonation and deprotonation of acrylonitrile derivatives N equivalent to C-CH=CH-X (X=CH3, NH2, PH2, SiH3), Chem. Eur. J., 2006, 12, 36, 9254-9261, https://doi.org/10.1002/chem.200600154 . [all data]

Chou, Dahlke, et al., 1993
Chou, P.K.; Dahlke, G.D.; Kass, S.R., Unimolecular Rearrangements of Carbanions in the Gas Phase .2. Cyclopropyl Anions, J. Chem. Soc. Chem. Comm., 1993, 115, 1, 315, https://doi.org/10.1021/ja00054a045 . [all data]

Dahlke and Kass, 1991
Dahlke, G.D.; Kass, S.R., Substituent Effects in the Gas Phase - 1-Substituted Allyl Anions, J. Am. Chem. Soc., 1991, 113, 15, 5566, https://doi.org/10.1021/ja00015a008 . [all data]

Dawson and Nibbering, 1980
Dawson, J.H.J.; Nibbering, N.M.M., The gas phase anionic chemistry of saturated and unsaturated aliphatic nitriles, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 3. [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Martin and Hepburn, 1998
Martin, J.D.D.; Hepburn, J.W., Determination of bond dissociation energies by threshold ion-pair production spectroscopy: An improved D-0(HCl), J. Chem. Phys., 1998, 109, 19, 8139-8142, https://doi.org/10.1063/1.477476 . [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Stoneman and Larson, 1986
Stoneman, R.C.; Larson, D.J., Photodetachment spectroscopy of SeH- in a magnetic field, J. Phys. B:, 1986, 19, 405. [all data]

Dixon, Holtz, et al., 1972
Dixon, D.A.; Holtz, D.; Beauchamp, J.L., Acidity, basicity, and gas-phase ion chemistry of hydrogen selenide by ion cyclotron resonance spectroscopy, Inorg. Chem., 1972, 11, 960. [all data]

Villano, Eyet, et al., 2010
Villano, S.M.; Eyet, N.; Wren, S.W.; Ellison, G.B.; Bierbaum, V.M.; Lineberger, W.C., Photoelectron Spectroscopy and Thermochemistry of the Peroxyformate Anion, J. Phys. Chem. A, 2010, 114, 1, 191-200, https://doi.org/10.1021/jp907569w . [all data]

Bowie, DePuy, et al., 1986
Bowie, J.H.; DePuy, C.H.; Sullivan, S.A.; Berbaum, V.M., Gas phase reactions of the hydroperoxide and peroxyformate anions, Can. J. Chem., 1986, 64, 1046. [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Strohmeier and Höhne, 1952
Strohmeier, W.; Höhne, I., Keto-Enol-Umwandlung des Acetylacteons in Gaszustand, Z. Naturfor., 1952, 7B, 184. [all data]

Folkendt, Weiss-Lopez, et al., 1989
Folkendt, M.M.; Weiss-Lopez, B.E.; Chauvel, J.P., Jr.; True, N.S., Gas-Phase 1H NMR Studies of Keto-Enol Tautomerization of Acetylacetone, Methyl Acetoacetate, and Ethyl Acetoacetate, J. Phys. Chem., 1989, 89, 15, 3347, https://doi.org/10.1021/j100261a038 . [all data]

Irikura, 1999
Irikura, K.K., Acetylacetonate (acac) anion in the gas phase: predicted structures, vibrational spectra, and photodetachment energies, Int. J. Mass Spectrom., 1999, 187, 577-587, https://doi.org/10.1016/S1387-3806(98)14192-1 . [all data]

Zimmerman and Brauman, 1977
Zimmerman, A.H.; Brauman, J.I., Electron photodetachment from negative ions of C2v symmetry. Electron affinities of allyl and cyanomethyl radicals, J. Am. Chem. Soc., 1977, 99, 3565. [all data]

Heni and Illenberger, 1986
Heni, M.; Illenberger, E., Electron attachment by saturated nitriles. Acrylonitrile (CH2H3CN), and benzonitrile (C6H5CN), Int. J. Mass Spectrom. Ion Phys., 1986, 73, 127. [all data]

Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M., Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid, J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426 . [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Oakes and Ellison, 1983
Oakes, J.M.; Ellison, B.G., Photoelectron spectroscopy of the allenyl anion CH2=C=CH-, J. Am. Chem. Soc., 1983, 105, 2969. [all data]

Wang and Wang, 1999
Wang, X.B.; Wang, L.S., Vibrationally resolved photoelectron spectroscopy of PO3- and the electronic structure of PO3, Chem. Phys. Lett., 1999, 313, 1-2, 179-183, https://doi.org/10.1016/S0009-2614(99)00993-8 . [all data]

Viggiano, Morris, et al., 1991
Viggiano, A.A.; Morris, R.A.; Dale, F.; Paulson, J.F.; Henshman, M.J.; Miller, T.M.; Miller, S., The Gas Phase Acidities of HPO3 and HPO2: Enthalpies of Deprotonation, J. Phys. Chem., 1991, 95, 3, 1275, https://doi.org/10.1021/j100156a044 . [all data]

Henchman, Viggiano, et al., 1985
Henchman, M.; Viggiano, A.A.; Paulson, J.F.; Freedman, A.; Wormhoudt, J., Thermodynamic and kinetic properties of the metaphosphate anion, PO3-, in the gas phase, J. Am. Chem. Soc., 1985, 107, 1453. [all data]

Born, Ingemann, et al., 2000
Born, M.; Ingemann, S.; Nibbering, N.M.M., Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase, Int. J. Mass Spectrom., 2000, 194, 2-3, 103-113, https://doi.org/10.1016/S1387-3806(99)00125-6 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R., Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study., J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f . [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]

Bartmess and Griffiths, 1990
Bartmess, J.E.; Griffiths, S.S., Tautomerization Energetics of Benzoannelated Toluenes, J. Am. Chem. Soc., 1990, 112, 8, 2932, https://doi.org/10.1021/ja00164a014 . [all data]

Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A., Ionic Probes of Aromaticity in Annelated Rings, J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001 . [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References