Hydrogen cation
- Formula: H+
- Molecular weight: 1.00739
- IUPAC Standard InChIKey: GPRLSGONYQIRFK-UHFFFAOYSA-N
- CAS Registry Number: 12408-02-5
- Chemical structure:
This structure is also available as a 2d Mol file - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 650, reactions 651 to 700, reactions 701 to 750, reactions 751 to 800, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1001 to 1050, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1375
- Options:
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 108.95 | J/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1982 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1555. ± 5. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1530.0 ± 0.75 | kJ/mol | H-TS | Blondel, Delsart, et al., 2001 | gas phase; Given: 3.4011895(25) eV, or 27432.446(19) cm-1, or 78.433266(577) kcal/mol |
ΔrG° | 1529.4 | kJ/mol | H-TS | Martin and Hepburn, 2000 | gas phase; Given: 371.334±0.003 kcal/mol (corr to 298K with data from Wagman, Evans, et al., 1982).H(0K)=370.422±0.003 |
ΔrG° | 1530.0 ± 0.75 | kJ/mol | H-TS | Blondel, Cacciani, et al., 1989 | gas phase; Reported: 3.401190±0.000004 eV. acidity includes 0.9 kcal 0 to 298 K correction. |
ΔrG° | 1529. ± 8.4 | kJ/mol | IMRE | Bierbaum, Schmidt, et al., 1981 | gas phase |
ΔrG° | 1503.7 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeCl3-; ; ΔS(EA)=5.0 |
By formula: C6H5O- + H+ = C6H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1462. ± 10. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1432. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; Shiner, Vorner, et al., 1986: tautomer acidities ΔHacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale |
ΔrG° | 1426. ± 7.9 | kJ/mol | CIDC | Angel and Ervin, 2004 | gas phase |
ΔrG° | 1437. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
ΔrG° | >1429. ± 7.5 | kJ/mol | H-TS | Richardson, Stephenson, et al., 1975 | gas phase |
C2H- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1580. ± 20. | kJ/mol | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1550. ± 20. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
CF3O- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1380. ± 8.4 | kJ/mol | G+TS | Huey, Dunlea, et al., 1996 | gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996 |
ΔrH° | 1454. ± 7.9 | kJ/mol | G+TS | Taft, Koppel, et al., 1990 | gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-. |
ΔrH° | <1431. ± 7.5 | kJ/mol | D-EA | Huey, Dunlea, et al., 1996 | gas phase; EA > NO3 |
ΔrH° | 1405.1 | kJ/mol | Acid | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1351. ± 6.7 | kJ/mol | IMRB | Huey, Dunlea, et al., 1996 | gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996 |
ΔrG° | 1425. ± 6.3 | kJ/mol | IMRB | Taft, Koppel, et al., 1990 | gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-. |
ΔrG° | 1377. ± 5.0 | kJ/mol | H-TS | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable. |
CH3O- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1597. ± 8. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1573.3 ± 2.6 | kJ/mol | H-TS | Nee, Osterwalder, et al., 2006 | gas phase |
ΔrG° | 1573.4 ± 2.3 | kJ/mol | H-TS | Osborn, Leahy, et al., 1998 | gas phase |
ΔrG° | 1565. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale |
ΔrG° | 1567. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1569.4 ± 2.5 | kJ/mol | TDEq | Meot-ner and Sieck, 1986 | gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O |
HS- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1470. ± 3. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1441. ± 13. | kJ/mol | H-TS | Rempala and Ervin, 2000 | gas phase |
ΔrG° | 1443. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1443.1 ± 0.42 | kJ/mol | H-TS | Shiell, Hu, et al., 1900 | gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05 |
ΔrG° | 1446. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
ΔrG° | 1432.2 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnO2-(t); ; ΔS(EA)=5.4 |
H2P- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1522. ± 6.3 | kJ/mol | D-EA | Ervin and Lineberger, 2005 | gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84 |
ΔrH° | 1551. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale |
ΔrH° | 1524. ± 19. | kJ/mol | EIAE | Halmann and Platzner, 1969 | gas phase |
ΔrH° | <1534. ± 19. | kJ/mol | EIAE | Ebinghaus, Kraus, et al., 1964 | gas phase |
ΔrH° | 1529.7 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnF5-(q); ; ΔS(EA)=2.9 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1491. ± 6.7 | kJ/mol | H-TS | Ervin and Lineberger, 2005 | gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84 |
ΔrG° | 1520. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale |
ΔrG° | 1500.8 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnF5-(q); ; ΔS(EA)=2.9 |
C6H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1678.7 ± 2.1 | kJ/mol | G+TS | Davico, Bierbaum, et al., 1995 | gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale |
ΔrH° | 1678.5 ± 0.88 | kJ/mol | D-EA | Gunion, Gilles, et al., 1992 | gas phase |
ΔrH° | 1677. ± 10. | kJ/mol | TDEq | Meot-ner and Sieck, 1986 | gas phase |
ΔrH° | 1680. ± 42. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase |
ΔrH° | 1665. ± 23. | kJ/mol | G+TS | Bohme and Young, 1971 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1641.8 ± 1.7 | kJ/mol | IMRE | Davico, Bierbaum, et al., 1995 | gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale |
ΔrG° | 1636. ± 8.4 | kJ/mol | TDEq | Meot-ner and Sieck, 1986 | gas phase |
ΔrG° | 1632. ± 27. | kJ/mol | IMRB | Bartmess and McIver Jr., 1979 | gas phase |
ΔrG° | 1628. ± 23. | kJ/mol | IMRB | Bohme and Young, 1971 | gas phase |
H3Si- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1564. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
ΔrH° | 1560. ± 8.8 | kJ/mol | G+TS | Wetzel, Salomon, et al., 1989 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1559.8 ± 3.5 | kJ/mol | D-EA | Nimlos and Ellison, 1986 | gas phase |
ΔrH° | 1556. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1564.4 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnS-(t); ; ΔS(EA)=5.7 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1530. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
ΔrG° | 1526. ± 8.4 | kJ/mol | IMRE | Wetzel, Salomon, et al., 1989 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1525.4 ± 3.9 | kJ/mol | H-TS | Nimlos and Ellison, 1986 | gas phase |
ΔrG° | 1522. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1533.0 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnS-(t); ; ΔS(EA)=5.7 |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1618. ± 8.8 | kJ/mol | G+TS | Buker, Nibbering, et al., 1997 | gas phase |
ΔrH° | 1620. ± 8.8 | kJ/mol | G+TS | Andrade and Riveros, 1996 | gas phase |
ΔrH° | 1620. ± 10. | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrH° | 1620. ± 10. | kJ/mol | Bran | Wenthold and Squires, 1995, 2 | gas phase; By HO- cleavage of substituted silanes |
ΔrH° | 1620. ± 23. | kJ/mol | G+TS | Briscese and Riveros, 1975 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1584. ± 8.4 | kJ/mol | IMRE | Buker, Nibbering, et al., 1997 | gas phase |
ΔrG° | 1586. ± 8.4 | kJ/mol | IMRE | Andrade and Riveros, 1996 | gas phase |
ΔrG° | 1585. ± 8.4 | kJ/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
ΔrG° | 1586. ± 11. | kJ/mol | H-TS | Wenthold and Squires, 1995, 2 | gas phase; By HO- cleavage of substituted silanes |
ΔrG° | 1586. ± 22. | kJ/mol | IMRB | Briscese and Riveros, 1975 | gas phase |
FO3S- + =
By formula: FO3S- + H+ = HFO3S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1285. ± 11. | kJ/mol | G+TS | Viggiano, Henchman, et al., 1992 | gas phase |
ΔrH° | 1301.7 | kJ/mol | Acid | Larson and McMahon, 1985 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable. |
ΔrH° | <1312. ± 8.4 | kJ/mol | EIAE | Adams, Smith, et al., 1986 | gas phase; From FSO3H (AP 0eV) |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1255. ± 10. | kJ/mol | IMRB | Viggiano, Henchman, et al., 1992 | gas phase |
ΔrG° | 1272.0 ± 1.3 | kJ/mol | H-TS | Larson and McMahon, 1985 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable. |
ΔrG° | <1282. ± 13. | kJ/mol | H-TS | Adams, Smith, et al., 1986 | gas phase; From FSO3H (AP 0eV) |
C3H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1716. ± 10. | kJ/mol | AVG | N/A | Average of 5 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1676. ± 10. | kJ/mol | AVG | N/A | Average of 3 out of 6 values; Individual data points |
HO4S- + =
By formula: HO4S- + H+ = H2O4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1295. ± 23. | kJ/mol | D-EA | Wang, Nicholas, et al., 2000 | gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106 |
ΔrH° | 1295. ± 11. | kJ/mol | G+TS | Viggiano, Henchman, et al., 1992 | gas phase |
ΔrH° | 1325.5 | kJ/mol | Latt | House Jr. and Kemper, 1987 | gas phase; From lattice energy of NH4HSO4, with new PA(NH3) |
ΔrH° | <1319.6 | kJ/mol | G+TS | Vigiano, Perry, et al., 1980 | gas phase; I- + H2SO4 ->. |
ΔrH° | <1312. ± 8.4 | kJ/mol | EIAE | Adams, Smith, et al., 1986 | gas phase; From H2SO4 (AP 0eV) |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1265. ± 23. | kJ/mol | H-TS | Wang, Nicholas, et al., 2000 | gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106 |
ΔrG° | 1265. ± 10. | kJ/mol | IMRB | Viggiano, Henchman, et al., 1992 | gas phase |
ΔrG° | <1288.7 | kJ/mol | IMRB | Vigiano, Perry, et al., 1980 | gas phase; I- + H2SO4 ->. |
ΔrG° | <1281. ± 9.6 | kJ/mol | H-TS | Adams, Smith, et al., 1986 | gas phase; From H2SO4 (AP 0eV) |
F2N- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1552. ± 8.8 | kJ/mol | G+TS | Koppel, Taft, et al., 1994 | gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns |
ΔrH° | 1506. ± 8.8 | kJ/mol | IMRE | Koppel, Pikver, et al., 1981 | gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore. |
ΔrH° | 1530. ± 15. | kJ/mol | D-EA | Ruckhaberle, Lehmann, et al., 1997 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1520. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns |
ΔrG° | 1474. ± 8.4 | kJ/mol | H-TS | Koppel, Pikver, et al., 1981 | gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore. |
C6H7Si- + =
By formula: C6H7Si- + H+ = C6H8Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1545. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
ΔrH° | 1540. ± 8.8 | kJ/mol | G+TS | Wetzel, Salomon, et al., 1989 | gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale |
ΔrH° | 1543. ± 13. | kJ/mol | D-EA | Wetzel, Salomon, et al., 1989 | gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol |
ΔrH° | 1551. ± 17. | kJ/mol | G+TS | Damrauer, Kass, et al., 1988 | gas phase; Between HF and acetone |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1515. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
ΔrG° | 1510. ± 8.4 | kJ/mol | IMRE | Wetzel, Salomon, et al., 1989 | gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale |
ΔrG° | 1513. ± 13. | kJ/mol | H-TS | Wetzel, Salomon, et al., 1989 | gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol |
ΔrG° | 1521. ± 17. | kJ/mol | IMRB | Damrauer, Kass, et al., 1988 | gas phase; Between HF and acetone |
CF3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1582. ± 5.9 | kJ/mol | D-EA | Deyerl, Alconcel, et al., 2001 | gas phase; Adiabatic EA, from vibrational structure of spectrum |
ΔrH° | 1577. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give ΔHacid=379.9, ΔGacid=372.0; value altered from reference due to change in acidity scale |
ΔrH° | 1573. ± 19. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1549. ± 6.3 | kJ/mol | H-TS | Deyerl, Alconcel, et al., 2001 | gas phase; Adiabatic EA, from vibrational structure of spectrum |
ΔrG° | 1545. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give ΔHacid=379.9, ΔGacid=372.0; value altered from reference due to change in acidity scale |
C2H3O- + =
By formula: C2H3O- + H+ = C2H4O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1533.1 ± 3.4 | kJ/mol | D-EA | Mead, Lykke, et al., 1984 | gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1) |
ΔrH° | 1531. ± 9.2 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale |
ΔrH° | 1533. ± 12. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1505. ± 5.0 | kJ/mol | H-TS | Mead, Lykke, et al., 1984 | gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1) |
ΔrG° | 1502. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale |
ΔrG° | 1505. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
By formula: CHO2- + H+ = CH2O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1449. ± 5.0 | kJ/mol | D-EA | Kim, Bradforth, et al., 1995 | gas phase; dHacid(0K) = 344.67±0.62 kcal/mol |
ΔrH° | 1445. ± 9.2 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrH° | 1445. ± 9.2 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1444. ± 12. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
ΔrH° | 1423. ± 19. | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1419. ± 6.3 | kJ/mol | H-TS | Kim, Bradforth, et al., 1995 | gas phase; dHacid(0K) = 344.67±0.62 kcal/mol |
ΔrG° | 1415. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase |
ΔrG° | 1416. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1415. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
H3Ge- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1501. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
ΔrH° | 1502. ± 5.4 | kJ/mol | G+TS | Decouzon, Gal, et al., 1993 | gas phase; The neutral acid ΔHf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997 |
ΔrH° | >1490. ± 11. | kJ/mol | D-EA | Reed and Brauman, 1974 | gas phase |
ΔrH° | 1514.6 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; Fe(CO)-(q); ; ΔS(EA)=5.0 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1467. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
ΔrG° | 1468. ± 5.0 | kJ/mol | IMRE | Decouzon, Gal, et al., 1993 | gas phase; The neutral acid ΔHf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997 |
ΔrG° | >1456. ± 12. | kJ/mol | H-TS | Reed and Brauman, 1974 | gas phase |
ΔrG° | 1480.7 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; Fe(CO)-(q); ; ΔS(EA)=5.0 |
CH5Si- + =
By formula: CH5Si- + H+ = CH6Si
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1579. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
ΔrH° | 1582. ± 13. | kJ/mol | D-EA | Wetzel, Salomon, et al., 1989 | gas phase |
ΔrH° | 1582. ± 8.8 | kJ/mol | G+TS | Wetzel, Salomon, et al., 1989 | gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale |
ΔrH° | 1613. ± 17. | kJ/mol | G+TS | Damrauer, Kass, et al., 1988 | gas phase; Between furan and methanol. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1544. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
ΔrG° | 1546. ± 13. | kJ/mol | H-TS | Wetzel, Salomon, et al., 1989 | gas phase |
ΔrG° | 1546. ± 8.4 | kJ/mol | IMRE | Wetzel, Salomon, et al., 1989 | gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale |
ΔrG° | 1577. ± 17. | kJ/mol | IMRB | Damrauer, Kass, et al., 1988 | gas phase; Between furan and methanol. |
C3HF6- + =
By formula: C3HF6- + H+ = C3H2F6
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1522. ± 17. | kJ/mol | G+TS | McDonald, Chowdhury, et al., 1984 | gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale |
ΔrH° | 1471. ± 9.2 | kJ/mol | G+TS | Koppel, Taft, et al., 1994 | gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF? |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1490. ± 17. | kJ/mol | IMRB | McDonald, Chowdhury, et al., 1984 | gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale |
ΔrG° | 1439. ± 8.4 | kJ/mol | IMRE | Koppel, Taft, et al., 1994 | gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF? |
C5H9O2- + =
By formula: C5H9O2- + H+ = C5H10O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1540. ± 13. | kJ/mol | D-EA | Baer, Brinkman, et al., 1991 | gas phase; Structure: cyclic H-bonded 5-hydroxypentanal enolate |
ΔrH° | 1496. ± 8.8 | kJ/mol | G+TS | Baer, Brinkman, et al., 1991 | gas phase; For deprotonation of neutral acetal. |
ΔrH° | 1502. ± 13. | kJ/mol | G+TS | Bartmess, Hays, et al., 1981 | gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1469. ± 8.4 | kJ/mol | IMRB | Baer, Brinkman, et al., 1991 | gas phase; For deprotonation of neutral acetal. |
ΔrG° | 1452. ± 13. | kJ/mol | IMRB | Baer, Brinkman, et al., 1991 | gas phase; For reprotonation of anion: structure is cyclic H-bonded cyclic enolate |
ΔrG° | 1474. ± 13. | kJ/mol | IMRB | Bartmess, Hays, et al., 1981 | gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization. |
H2As- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1496. ± 8.8 | kJ/mol | G+TS | Gal, Maria, et al., 1989 | gas phase |
ΔrH° | 1497. ± 13. | kJ/mol | D-EA | Smyth and Brauman, 1972 | gas phase |
ΔrH° | 1514. ± 26. | kJ/mol | G+TS | Wyatt, Holtz, et al., 1974 | gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale |
ΔrH° | <1505. ± 19. | kJ/mol | EIAE | Ebinghaus, Kraus, et al., 1964 | gas phase; From AsH3 |
ΔrH° | 1502.1 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; CrOO-(q); ; ΔS(EA)=1.7 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1464. ± 8.4 | kJ/mol | IMRE | Gal, Maria, et al., 1989 | gas phase |
ΔrG° | 1483. ± 25. | kJ/mol | IMRB | Wyatt, Holtz, et al., 1974 | gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale |
ΔrG° | 1473.6 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; CrOO-(q); ; ΔS(EA)=1.7 |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1556. ± 8.4 | kJ/mol | D-EA | Mihalick, Gatev, et al., 1996 | gas phase; Derived BDE: 103.3±2.8 kcal/mol |
ΔrH° | 1554. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1553. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1528. ± 8.4 | kJ/mol | IMRE | Clifford, Wenthold, et al., 1998 | gas phase |
ΔrG° | 1528. ± 8.8 | kJ/mol | H-TS | Mihalick, Gatev, et al., 1996 | gas phase; Derived BDE: 103.3±2.8 kcal/mol |
ΔrG° | 1526. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1525. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
C3H3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1591. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
ΔrH° | 1597. ± 9.6 | kJ/mol | D-EA | Robinson, Polak, et al., 1995 | gas phase |
ΔrH° | 1595. ± 8.8 | kJ/mol | G+TS | Robinson, Polak, et al., 1995 | gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme |
ΔrH° | 1594. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1559. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
ΔrG° | 1562. ± 8.4 | kJ/mol | IMRE | Robinson, Polak, et al., 1995 | gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme |
ΔrG° | 1562. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
C7H7- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1599.7 ± 1.9 | kJ/mol | D-EA | Gunion, Gilles, et al., 1992 | gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA |
ΔrH° | 1593. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1587. ± 8.8 | kJ/mol | G+TS | Gal, Decouzon, et al., 2001 | gas phase |
ΔrH° | 1577. ± 15. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase |
ΔrH° | 1609. ± 30. | kJ/mol | G+TS | Bohme and Young, 1971 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1564. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1557. ± 8.4 | kJ/mol | IMRE | Gal, Decouzon, et al., 2001 | gas phase |
ΔrG° | 1579. ± 29. | kJ/mol | IMRB | Bohme and Young, 1971 | gas phase |
C3H5- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1636.4 ± 1.3 | kJ/mol | G+TS | Ellison, Davico, et al., 1996 | gas phase; calculated dSacid=24.2±1.0 eu |
ΔrH° | 1634. ± 4.2 | kJ/mol | D-EA | Wenthold, Polak, et al., 1996 | gas phase |
ΔrH° | 1635. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1632.8 ± 2.7 | kJ/mol | G+TS | Mackay, Lien, et al., 1978 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1605.8 ± 0.42 | kJ/mol | IMRE | Ellison, Davico, et al., 1996 | gas phase; calculated dSacid=24.2±1.0 eu |
ΔrG° | 1606. ± 4.6 | kJ/mol | H-TS | Wenthold, Polak, et al., 1996 | gas phase |
ΔrG° | 1607. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1605.0 ± 2.1 | kJ/mol | IMRE | Mackay, Lien, et al., 1978 | gas phase |
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1570. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1571. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1569. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1543. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1543. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1541. ± 12. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
C4H4N- + =
By formula: C4H4N- + H+ = C4H5N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1495. ± 13. | kJ/mol | G+TS | Luna, Mo, et al., 2006 | gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH |
ΔrH° | 1501. ± 13. | kJ/mol | G+TS | Chou, Dahlke, et al., 1993 | gas phase; Acid: CH2=CHCH2CN |
ΔrH° | 1521. ± 21. | kJ/mol | G+TS | Dahlke and Kass, 1991 | gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1464. ± 13. | kJ/mol | IMRB | Luna, Mo, et al., 2006 | gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH |
ΔrG° | 1472. ± 13. | kJ/mol | IMRB | Chou, Dahlke, et al., 1993 | gas phase; Acid: CH2=CHCH2CN |
ΔrG° | 1491. ± 21. | kJ/mol | IMRB | Dahlke and Kass, 1991 | gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain. |
ΔrG° | <1527. ± 8.4 | kJ/mol | IMRB | Dawson and Nibbering, 1980 | gas phase; Acid: CH2=CHCH2CN |
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1566. ± 8.8 | kJ/mol | G+TS | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1565. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1538. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1538. ± 8.4 | kJ/mol | IMRE | Taft, 1987 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1538. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1394.9 | kJ/mol | N/A | Martin and Hepburn, 1998 | gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol |
ΔrH° | 1396. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1377.0 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeCC-(q); ; ΔS(EA)=5.0 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1372.8 ± 0.42 | kJ/mol | H-TS | Martin and Hepburn, 1998 | gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol |
ΔrG° | 1374. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1354.4 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeCC-(q); ; ΔS(EA)=5.0 |
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1587. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase |
ΔrH° | 1582. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrH° | 1579. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1586.2 ± 0.42 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1559. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase |
ΔrG° | 1554. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
ΔrG° | 1551. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1568. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase |
ΔrH° | 1567. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1573.2 ± 2.9 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase |
ΔrH° | 1566. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1540. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1538. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C3H7O- + =
By formula: C3H7O- + H+ = C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1569. ± 4.2 | kJ/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase |
ΔrH° | 1571. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1576. ± 4.2 | kJ/mol | CIDT | DeTuri and Ervin, 1999 | gas phase |
ΔrH° | 1572. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1542. ± 4.6 | kJ/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase |
ΔrG° | 1543. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1544. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy. |
C2H3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1704. ± 9. | kJ/mol | AVG | N/A | Average of 5 out of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1677.8 ± 2.1 | kJ/mol | IMRE | Ervin, Gronert, et al., 1990 | gas phase |
ΔrG° | 1670. ± 8.8 | kJ/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase |
ΔrG° | 1668. ± 21. | kJ/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase |
ΔrG° | >1661.0 | kJ/mol | IMRB | Froelicher, Freiser, et al., 1986 | gas phase |
HSe- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1428.8 ± 2.9 | kJ/mol | D-EA | Stoneman and Larson, 1986 | gas phase; Wagman, Evans, et al., 1982 ΔHf(AH) = 7.1 kcal/mol |
ΔrH° | 1434. ± 38. | kJ/mol | G+TS | Dixon, Holtz, et al., 1972 | gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale |
ΔrH° | 1424.7 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnO-(t); ; ΔS(EA)=5.5 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1402.4 ± 3.3 | kJ/mol | H-TS | Stoneman and Larson, 1986 | gas phase; Wagman, Evans, et al., 1982 ΔHf(AH) = 7.1 kcal/mol |
ΔrG° | 1407. ± 38. | kJ/mol | IMRB | Dixon, Holtz, et al., 1972 | gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale |
ΔrG° | 1398.3 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnO-(t); ; ΔS(EA)=5.5 |
CHO3- + =
By formula: CHO3- + H+ = CH2O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1467. ± 14. | kJ/mol | G+TS | Villano, Eyet, et al., 2010 | gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid |
ΔrH° | <1551. ± 9.2 | kJ/mol | G+TS | Bowie, DePuy, et al., 1986 | gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1439. ± 14. | kJ/mol | IMRB | Villano, Eyet, et al., 2010 | gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid |
ΔrG° | <1523. ± 8.4 | kJ/mol | IMRB | Bowie, DePuy, et al., 1986 | gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m |
C5H7O2- + =
By formula: C5H7O2- + H+ = C5H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1438. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952) |
ΔrH° | 1438. ± 9.6 | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999 |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1409. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952) |
ΔrG° | 1408. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999 |
C2H2N- + =
By formula: C2H2N- + H+ = C2H3N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1560. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1544. ± 19. | kJ/mol | CIDT | Graul and Squires, 1990 | gas phase |
ΔrH° | 1562. ± 11. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
ΔrH° | 1568. ± 8.4 | kJ/mol | D-EA | Zimmerman and Brauman, 1977 | gas phase |
ΔrH° | 1534. ± 19. | kJ/mol | EIAE | Heni and Illenberger, 1986 | gas phase; From MeCN |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1528. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1530. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
ΔrG° | 1536. ± 8.8 | kJ/mol | H-TS | Zimmerman and Brauman, 1977 | gas phase |
By formula: C2H3O2- + H+ = C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1457. ± 5.9 | kJ/mol | CIDC | Angel and Ervin, 2006 | gas phase |
ΔrH° | 1456. ± 9.2 | kJ/mol | G+TS | Taft and Topsom, 1987 | gas phase |
ΔrH° | 1459. ± 8.8 | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase |
ΔrH° | 1459. ± 9.2 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1435.9 ± 2.9 | kJ/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1427. ± 8.4 | kJ/mol | IMRE | Taft and Topsom, 1987 | gas phase |
ΔrG° | 1429. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
ΔrG° | 1430. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
C3H3- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1590. ± 8.4 | kJ/mol | D-EA | Robinson, Polak, et al., 1995 | gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic. |
ΔrH° | 1596. ± 13. | kJ/mol | G+TS | Robinson, Polak, et al., 1995 | gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization |
ΔrH° | 1592. ± 8.8 | kJ/mol | D-EA | Oakes and Ellison, 1983 | gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1560. ± 13. | kJ/mol | IMRE | Robinson, Polak, et al., 1995 | gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization |
ΔrG° | 1556. ± 9.2 | kJ/mol | H-TS | Oakes and Ellison, 1983 | gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic. |
O3P- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1300. ± 18. | kJ/mol | D-EA | Wang and Wang, 1999 | gas phase |
ΔrH° | 1300. ± 11. | kJ/mol | G+TS | Viggiano, Henchman, et al., 1992 | gas phase |
ΔrH° | 1300. ± 15. | kJ/mol | Endo | Viggiano, Morris, et al., 1991 | gas phase |
ΔrH° | <1323. ± 13. | kJ/mol | G+TS | Henchman, Viggiano, et al., 1985 | gas phase; The neutral thermochemistry appears to be in conflict with computational values |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1270. ± 18. | kJ/mol | H-TS | Wang and Wang, 1999 | gas phase |
ΔrG° | 1270. ± 10. | kJ/mol | IMRB | Viggiano, Henchman, et al., 1992 | gas phase |
ΔrG° | <1293. ± 13. | kJ/mol | IMRB | Henchman, Viggiano, et al., 1985 | gas phase; The neutral thermochemistry appears to be in conflict with computational values |
CHCl2- + =
By formula: CHCl2- + H+ = CH2Cl2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1572. ± 9.2 | kJ/mol | G+TS | Born, Ingemann, et al., 2000 | gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol |
ΔrH° | 1567. ± 13. | kJ/mol | G+TS | Bohme, Lee-Ruff, et al., 1972 | gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRE | Born, Ingemann, et al., 2000 | gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol |
ΔrG° | 1543.9 ± 2.9 | kJ/mol | IMRE | Poutsma, Paulino, et al., 1997 | gas phase; relative to tBuOH at ΔGacid = 369.3 |
ΔrG° | 1535. ± 13. | kJ/mol | IMRB | Bohme, Lee-Ruff, et al., 1972 | gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale |
C7H7O- + =
By formula: C7H7O- + H+ = C7H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1465. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1465. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1471. ± 9.6 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1437. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1437. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1442. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase |
By formula: C7H5O2- + H+ = C7H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1423. ± 9.2 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1423. ± 12. | kJ/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; Recalculated from data in paper; error in Table vs. ladder |
ΔrH° | 1423. ± 9.2 | kJ/mol | G+TS | Caldwell, Renneboog, et al., 1989 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1393. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1393. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; Recalculated from data in paper; error in Table vs. ladder |
ΔrG° | 1394. ± 8.4 | kJ/mol | IMRE | Caldwell, Renneboog, et al., 1989 | gas phase |
C11H9- + =
By formula: C11H9- + H+ = C11H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.8 | kJ/mol | G+TS | Bartmess and Griffiths, 1990 | gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1 |
ΔrH° | 1551. ± 10. | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1531. ± 8.4 | kJ/mol | IMRE | Bartmess and Griffiths, 1990 | gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1 |
ΔrG° | 1516. ± 8.4 | kJ/mol | TDEq | Meot-ner, Liebman, et al., 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho. |
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1565. ± 8.8 | kJ/mol | G+TS | Higgins and Bartmess, 1998 | gas phase |
ΔrH° | 1565. ± 13. | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrH° | 1561. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1537. ± 8.4 | kJ/mol | IMRE | Higgins and Bartmess, 1998 | gas phase |
ΔrG° | 1538. ± 13. | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrG° | 1533. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
C7H15O- + =
By formula: C7H15O- + H+ = C7H16O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1567. ± 8.8 | kJ/mol | G+TS | Higgins and Bartmess, 1998 | gas phase |
ΔrH° | 1564. ± 13. | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrH° | 1559. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRE | Higgins and Bartmess, 1998 | gas phase |
ΔrG° | 1536. ± 13. | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrG° | 1531. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
C8H17O- + =
By formula: C8H17O- + H+ = C8H18O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1566. ± 8.8 | kJ/mol | G+TS | Higgins and Bartmess, 1998 | gas phase |
ΔrH° | 1563. ± 13. | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrH° | 1556. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1538. ± 8.4 | kJ/mol | IMRE | Higgins and Bartmess, 1998 | gas phase |
ΔrG° | 1535. ± 13. | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrG° | 1528. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
C9H19O- + =
By formula: C9H19O- + H+ = C9H20O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1567. ± 8.8 | kJ/mol | G+TS | Higgins and Bartmess, 1998 | gas phase |
ΔrH° | 1561. ± 13. | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrH° | 1553. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRE | Higgins and Bartmess, 1998 | gas phase |
ΔrG° | 1534. ± 13. | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results. |
ΔrG° | 1525. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Blondel, Delsart, et al., 2001
Blondel, C.; Delsart, C.; Goldfarb, F.,
Electron spectrometry at the mu eV level and the electron affinities of Si and F,
J. Phys. B: Atom. Mol. Opt. Phys., 2001, 34, 9, L281-L288, https://doi.org/10.1088/0953-4075/34/9/101
. [all data]
Martin and Hepburn, 2000
Martin, J.D.D.; Hepburn, J.W.,
Faraday Disc. Chem. Soc., 2000, 115, 416. [all data]
Wagman, Evans, et al., 1982
Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L.,
The NBS Tables of Chemical Thermodynamic Properties (NBS Tech Note 270),
J. Phys. Chem. Ref. Data, Supl. 1, 1982, 11. [all data]
Blondel, Cacciani, et al., 1989
Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R.,
High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams,
Phys. Rev. A, 1989, 40, 7, 3698, https://doi.org/10.1103/PhysRevA.40.3698
. [all data]
Bierbaum, Schmidt, et al., 1981
Bierbaum, V.M.; Schmidt, R.J.; DePuy, C.H.; Mead, R.H.; Schulz, P.A.; Lineberger, W.C.,
Reactions of carbanions with triplet and singlet molecular oxygen,
J. Am. Chem. Soc., 1981, 103, 6262. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Shiner, Vorner, et al., 1986
Shiner, C.S.; Vorner, P.E.; Kass, S.R.,
Gas phase acidities and heats of formation of 2,4- and 2,5- cyclohexadien-1-one, the keto tautomers of phenol,
J. Am. Chem. Soc., 1986, 108, 5699. [all data]
Capponi, Gut, et al., 1999
Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J.,
Ketonization equilibria of phenol in aqueous solution,
Can. J. Chem., 1999, 77, 5-6, 605-613, https://doi.org/10.1139/v99-048
. [all data]
Angel and Ervin, 2004
Angel, L.A.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidity and O-H bond dissociation enthalpy of phenol,
J. Phys. Chem. A, 2004, 108, 40, 8346-8352, https://doi.org/10.1021/jp0474529
. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I.,
Photodetachment of electrons from phenoxides and thiophenoxide,
J. Am. Chem. Soc., 1975, 97, 2967. [all data]
Huey, Dunlea, et al., 1996
Huey, L.G.; Dunlea, E.J.; Howard, C.J.,
Gas-Phase Acidity of CF3OH,
J. Phys. Chem., 1996, 100, 16, 6504, https://doi.org/10.1021/jp953058m
. [all data]
Segovia and Ventura, 1997
Segovia, M.; Ventura, O.N.,
Density functional and G2 study of the strength of the OH bond in CF3OH,
Chem. Phys. Lett., 1997, 277, 5-6, 490-496, https://doi.org/10.1016/S0009-2614(97)00860-9
. [all data]
Burk, Koppel, et al., 2000
Burk, P.; Koppel, I.A.; Rummel, A.; Trummal, A.,
Can O-H acid be more acidic than its S-H analog? A G2 study of fluoromethanols and fluoromethanethiols,
J. Phys. Chem. A, 2000, 104, 7, 1602-1607, https://doi.org/10.1021/jp993487a
. [all data]
Chyall and Squires, 1996
Chyall, L.J.; Squires, R.R.,
The Proton Affinity and Absolute Heat of Formation of Trifluoromethanpl,
J. Phys. Chem., 1996, 100, 16435. [all data]
Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F.,
Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids,
J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M.,
Slow electron velocity-map imaging photoelectron spectra of the methoxide anion,
J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411
. [all data]
Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M.,
Photoelectron spectroscopy of CH3O- and CD3O-,
Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M.,
Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H,
J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016
. [all data]
Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W.,
A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule,
J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k
. [all data]
Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]
Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H.,
High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-,
Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609
. [all data]
Ervin and Lineberger, 2005
Ervin, K.M.; Lineberger, W.C.,
Photoelectron spectroscopy of phosphorus hydride anions,
J. Chem. Phys., 2005, 122, 19, 194303, https://doi.org/10.1063/1.1881153
. [all data]
Curtiss, Raghavachari, et al., 1991
Curtiss, L.A.; Raghavachari, K.; Trucks, G.W.; Pople, J.A.,
Gaussian-2 Theory for Molecular Energies of First- and Second-row Compounds,
J. Chem. Phys., 1991, 94, 11, 7221, https://doi.org/10.1063/1.460205
. [all data]
Ricca and Bauschlicher, 1998
Ricca, A.; Bauschlicher, C.W., Jr.,
Accurate Heats of Formation for PHn, PHn+, and PHn-,
Chem. Phys. Lett., 1998, 285, 5-6, 455, https://doi.org/10.1016/S0009-2614(97)01468-1
. [all data]
Halmann and Platzner, 1969
Halmann, M.; Platzner, I.,
Negative Ions Produced by Electron Capture in Phosphine,
J. Phys. Chem., 1969, 73, 12, 4376, https://doi.org/10.1021/j100846a062
. [all data]
Ebinghaus, Kraus, et al., 1964
Ebinghaus, H.; Kraus, K.; Neuert, H.; Muller-Duysing, W.,
Negative Ionen durch Elecktronenresonanzeinfang in PH3, AsH3, und SiH4,
Z. Naturfor., 1964, 19A, 732. [all data]
Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R.,
The C-H bond energy of benzene,
J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023
. [all data]
Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F.,
Anchoring the gas-phase acidity scale,
J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n
. [all data]
Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P.,
Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5,
J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o
. [all data]
Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C.,
Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions.,
Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H
. [all data]
Graul and Squires, 1990
Graul, S.T.; Squires, R.R.,
Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions,
J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007
. [all data]
Bohme and Young, 1971
Bohme, D.K.; Young, L.B.,
Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2,
Can. J. Chem., 1971, 49, 2918. [all data]
Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr.,
The Gas Phase Acidity Scale
in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]
Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C.,
Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes,
J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j
. [all data]
Wetzel, Salomon, et al., 1989
Wetzel, D.M.; Salomon, K.E.; Berger, S.; Brauman, J.I.,
Gas-Phase Acidities of Organosilanes and Electron Affinities of Organosilyl Radicals,
J. Am. Chem. Soc., 1989, 111, 11, 3835, https://doi.org/10.1021/ja00193a013
. [all data]
Nimlos and Ellison, 1986
Nimlos, M.R.; Ellison, G.B.,
Photoelectron spectroscopy of SiH3- and SiD3-,
J. Am. Chem. Soc., 1986, 108, 6522. [all data]
Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M.,
Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution,
Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3
. [all data]
Andrade and Riveros, 1996
Andrade, P.B.M.; Riveros, J.M.,
Relative Gas-phase Acidities of Fluoro- and Chlorobenzene,
J. Mass Spectrom., 1996, 31, 7, 767, https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<767::AID-JMS345>3.0.CO;2-Q
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
Wenthold and Squires, 1995, 2
Wenthold, P.G.; Squires, R.R.,
Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method,
J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105
. [all data]
Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M.,
Gas phase nucleophilic reactions of aromatic systems,
J. Am. Chem. Soc., 1975, 97, 230. [all data]
Viggiano, Henchman, et al., 1992
Viggiano, A.A.; Henchman, M.J.; Dale, F.; Deakyne, C.A.; Paulson, J.F.,
Gas-Phase Reactions of Weak Bronsted Bases I-, PO3-, HSO4-, FSO3-, and CF3SO3- with Strong Bronsted Acids H2SO4, FSO3H, and CF3SO3H - A Quantitative Study,
J. Am. Chem. Soc., 1992, 114, 11, 4299, https://doi.org/10.1021/ja00037a039
. [all data]
Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria,
J. Am. Chem. Soc., 1985, 107, 766. [all data]
Adams, Smith, et al., 1986
Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J.,
Dissociative attachment reactions of electron with strong acid molecules,
J. Chem. Phys., 1986, 84, 6728. [all data]
Wang, Nicholas, et al., 2000
Wang, X.B.; Nicholas, J.B.; Wang, L.S.,
Photoelectron spectroscopy and theoretical calculations of SO4- and HSO4-: Confirmation of high electron affinities of SO4 and HSO4,
J. Phys. Chem. A, 2000, 104, 3, 504-508, https://doi.org/10.1021/jp992726r
. [all data]
House Jr. and Kemper, 1987
House Jr.; Kemper, K.A.,
Proton Affinities of Sulfate and Bisulfate Ions,
J. Thermal Anal., 1987, 32, 6, 1855, https://doi.org/10.1007/BF01913977
. [all data]
Vigiano, Perry, et al., 1980
Vigiano, A.A.; Perry, R.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C.,
The role of H2SO4 in stratospheric negative ion chemistry,
J. Geophys. Res., 1980, 85, 4551. [all data]
Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M.,
The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids,
J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038
. [all data]
Koppel, Pikver, et al., 1981
Koppel, I.; Pikver, R.; Sugis, A.; Suurmaa, E.; Lippmaa, E.,
FTICR Study of Structure and Solvent Effects on Basicity of Some Anions in the Gas Phase,
Org. Reac., 1981, 18, 3. [all data]
Ruckhaberle, Lehmann, et al., 1997
Ruckhaberle, N.; Lehmann, L.; Matejcik, S.; Illenberger, E.; Bouteiller, Y.; Periquet, V.; Museur, L.; Desfran,
Free Electron Attachment and Rydberg Electron Transfer to NF3 Molecules and Clusters,
J. Phys. Chem. A, 1997, 101, 51, 9942, https://doi.org/10.1021/jp972422+
. [all data]
Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H.,
Gas-Phase Acidities of Methylsilanes: C-H versus Si-H,
Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011
. [all data]
Deyerl, Alconcel, et al., 2001
Deyerl, H.J.; Alconcel, L.S.; Continetti, R.E.,
Photodetachment imaging studies of the electron affinity of CF3,
J. Phys. Chem. A, 2001, 105, 3, 552-557, https://doi.org/10.1021/jp003137k
. [all data]
Paulino and Squires, 1991
Paulino, J.A.; Squires, R.R.,
Carbene Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements - The Heats of Formation of X1A1 CF2 and X1A1 CCl2,
J. Am. Chem. Soc., 1991, 113, 15, 5573, https://doi.org/10.1021/ja00015a009
. [all data]
Mead, Lykke, et al., 1984
Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I.,
Spectroscopy and Dynamics of the Dipole-Bound State of Acetaldehyde Enolate.,
J. Chem. Phys., 1984, 81, 11, 4883., https://doi.org/10.1063/1.447515
. [all data]
Holmes and Lossing, 1982
Holmes, J.L.; Lossing, F.P.,
Heats of formation of the ionic and neutral enols of acetaldehyde and acetone,
J. Am. Chem. Soc., 1982, 104, 2648. [all data]
Kim, Bradforth, et al., 1995
Kim, E.H.; Bradforth, S.E.; Arnold, D.W.; Metz, R.B.; Neumark, D.M.,
Study of HCO2 and DCO2 by Negative Ion Photoelectron Spectroscopy,
J. Chem. Phys., 1995, 103, 18, 7801, https://doi.org/10.1063/1.470196
. [all data]
Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P.,
Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria,
Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092
. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Decouzon, Gal, et al., 1993
Decouzon, M.; Gal, J.F.; Gayraud, J.; Maria, P.C.; Vaglio, G.A.; Volpe, P.,
Fourier Transform-Ion Cyclotron Resonance Study of the Gas-Phase Acidities of Germane and Methylgermane - Bond Dissociation Energy of German,
J. Am. Soc. Mass Spectrom., 1993, 4, 1, 54, https://doi.org/10.1016/1044-0305(93)85042-V
. [all data]
Mayer, Gal, et al., 1997
Mayer, P.M.; Gal, J.-F.; Radom, L.,
The Heats of Formation, Gas-phase Acidities, and Related Thermochemical Properties of the Third-row Hydrides GeH4, AsH3, SeH2, and HBr from G2 ab initio Calculations,
Int. J. Mass Spectrom. Ion Proc., 1997, 167/168, 689, https://doi.org/10.1016/S0168-1176(97)00127-4
. [all data]
Reed and Brauman, 1974
Reed, K.J.; Brauman, J.I.,
Photodetachment of electrons from Group IVa binary hydride anions: The electron affinities of the SiH3 and GeH3 radicals,
J. Chem. Phys., 1974, 61, 4830. [all data]
McDonald, Chowdhury, et al., 1984
McDonald, R.N.; Chowdhury, A.K.; McGhee, W.D.,
Gas-Phase Generation of 1,1,1,3,3,3-Hexafluoroisopropylidene Anion Radical: Proton Affinity and Heat of Formation of (CF3)2C- and (CF3)2CH-,
J. Am. Chem. Soc., 1984, 106, 15, 4112, https://doi.org/10.1021/ja00327a008
. [all data]
Baer, Brinkman, et al., 1991
Baer, S.; Brinkman, E.A.; Brauman, J.I.,
Hemiacetal Anions: A Model for Tetrahedral Reaction Intermediates,
J. Am. Chem. Soc., 1991, 113, 3, 805, https://doi.org/10.1021/ja00003a012
. [all data]
Bartmess, Hays, et al., 1981
Bartmess, J.E.; Hays, R.L.; Caldwell, G.,
The Addition of Carbanions to Carbonyl Groups in the Gas Phase,
J. Am. Chem. Soc., 1981, 103, 6, 1338, https://doi.org/10.1021/ja00396a006
. [all data]
Gal, Maria, et al., 1989
Gal, J.-F.; Maria, P.-C.; Decouzon, M.,
The Gas-Phase Acidity and Bond Dissociation Energies of Hydrogen Telluride,
Int. J. Mass Spectrom. Ion Proc., 1989, 93, 1, 87, https://doi.org/10.1016/0168-1176(89)83076-9
. [all data]
Smyth and Brauman, 1972
Smyth, K.C.; Brauman, J.I.,
Photodetachment of electrons from amide and arsenide ions: The electron affinities of NH2 and AsH2.,
J. Chem. Phys., 1972, 56, 4620. [all data]
Wyatt, Holtz, et al., 1974
Wyatt, R.H.; Holtz, D.; McMahon, T.B.; Beauchamp, J.L.,
Acidity, basicity, and ion-molecule reactions of arsine in the gas phase by ICR spectroscopy,
Inorg. Chem., 1974, 13, 1511. [all data]
Mihalick, Gatev, et al., 1996
Mihalick, J.E.; Gatev, G.G.; Brauman, J.I.,
Electron Photodetachment Spectroscopy of Solvated Anions: RO.HF- or ROH.F-?,
J. Am. Chem. Soc., 1996, 118, 49, 12424, https://doi.org/10.1021/ja954202k
. [all data]
Clifford, Wenthold, et al., 1998
Clifford, E.P.; Wenthold, P.G.; Gareyev, R.; Lineberger, W.C.; DePuy, C.H.; Bierbaum, V.M.; Ellison, G.B.,
Photoelectron spectroscopy, gas phase acidity, and thermochemistry of tert-butyl hydroperoxide: Mechanisms for the rearrangement of peroxyl radicals,
J. Chem. Phys., 1998, 109, 23, 10293-10310, https://doi.org/10.1063/1.477725
. [all data]
Robinson, Polak, et al., 1995
Robinson, M.S.; Polak, M.L.; Bierbaum, V.M.; DePuy, C.H.; Lineberger, W.C.,
Experimental Studies of Allene, Methylacetylene, and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase Acidities, and Ion-Molecule Chemistry,
J. Am. Chem. Soc., 1995, 117, 25, 6766, https://doi.org/10.1021/ja00130a017
. [all data]
Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C.,
Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions,
J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o
. [all data]
Ellison, Davico, et al., 1996
Ellison, G.B.; Davico, G.E.; Bierbaum, V.M.; DePuy, C.H.,
Thermochemistry of theb Benzyl and Allyl Radicals and Ions,
Int. J. Mass Spectrom. Ion Proc., 1996, 156, 1-2, 109-131, https://doi.org/10.1016/S0168-1176(96)04383-2
. [all data]
Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C.,
Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions,
J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n
. [all data]
Mackay, Lien, et al., 1978
Mackay, G.I.; Lien, M.H.; Hopkinson, A.C.; Bohme, D.K.,
Experimental and theoretical studies of proton removal from propene,
Can. J. Chem., 1978, 56, 131. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Luna, Mo, et al., 2006
Luna, A.; Mo, O.; Yanez, M.; Gal, J.F.; Maria, P.C.; Guillemin, J.C.,
Gas-phase protonation and deprotonation of acrylonitrile derivatives N equivalent to C-CH=CH-X (X=CH3, NH2, PH2, SiH3),
Chem. Eur. J., 2006, 12, 36, 9254-9261, https://doi.org/10.1002/chem.200600154
. [all data]
Chou, Dahlke, et al., 1993
Chou, P.K.; Dahlke, G.D.; Kass, S.R.,
Unimolecular Rearrangements of Carbanions in the Gas Phase .2. Cyclopropyl Anions,
J. Chem. Soc. Chem. Comm., 1993, 115, 1, 315, https://doi.org/10.1021/ja00054a045
. [all data]
Dahlke and Kass, 1991
Dahlke, G.D.; Kass, S.R.,
Substituent Effects in the Gas Phase - 1-Substituted Allyl Anions,
J. Am. Chem. Soc., 1991, 113, 15, 5566, https://doi.org/10.1021/ja00015a008
. [all data]
Dawson and Nibbering, 1980
Dawson, J.H.J.; Nibbering, N.M.M.,
The gas phase anionic chemistry of saturated and unsaturated aliphatic nitriles,
Int. J. Mass Spectrom. Ion Phys., 1980, 33, 3. [all data]
Taft, 1987
Taft, R.W.,
The Nature and Analysis of Substitutent Electronic Effects,
Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Martin and Hepburn, 1998
Martin, J.D.D.; Hepburn, J.W.,
Determination of bond dissociation energies by threshold ion-pair production spectroscopy: An improved D-0(HCl),
J. Chem. Phys., 1998, 109, 19, 8139-8142, https://doi.org/10.1063/1.477476
. [all data]
Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C.,
Vibronic structure of alkoxy radicals via photoelectron spectroscopy,
J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767
. [all data]
DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols,
J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m
. [all data]
Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C.,
Bonds Strengths of Ethylene and Acetylene,
J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013
. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R.,
The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase,
J. Am. Chem. Soc., 1986, 108, 2853. [all data]
Stoneman and Larson, 1986
Stoneman, R.C.; Larson, D.J.,
Photodetachment spectroscopy of SeH- in a magnetic field,
J. Phys. B:, 1986, 19, 405. [all data]
Dixon, Holtz, et al., 1972
Dixon, D.A.; Holtz, D.; Beauchamp, J.L.,
Acidity, basicity, and gas-phase ion chemistry of hydrogen selenide by ion cyclotron resonance spectroscopy,
Inorg. Chem., 1972, 11, 960. [all data]
Villano, Eyet, et al., 2010
Villano, S.M.; Eyet, N.; Wren, S.W.; Ellison, G.B.; Bierbaum, V.M.; Lineberger, W.C.,
Photoelectron Spectroscopy and Thermochemistry of the Peroxyformate Anion,
J. Phys. Chem. A, 2010, 114, 1, 191-200, https://doi.org/10.1021/jp907569w
. [all data]
Bowie, DePuy, et al., 1986
Bowie, J.H.; DePuy, C.H.; Sullivan, S.A.; Berbaum, V.M.,
Gas phase reactions of the hydroperoxide and peroxyformate anions,
Can. J. Chem., 1986, 64, 1046. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Strohmeier and Höhne, 1952
Strohmeier, W.; Höhne, I.,
Keto-Enol-Umwandlung des Acetylacteons in Gaszustand,
Z. Naturfor., 1952, 7B, 184. [all data]
Folkendt, Weiss-Lopez, et al., 1989
Folkendt, M.M.; Weiss-Lopez, B.E.; Chauvel, J.P., Jr.; True, N.S.,
Gas-Phase 1H NMR Studies of Keto-Enol Tautomerization of Acetylacetone, Methyl Acetoacetate, and Ethyl Acetoacetate,
J. Phys. Chem., 1989, 89, 15, 3347, https://doi.org/10.1021/j100261a038
. [all data]
Irikura, 1999
Irikura, K.K.,
Acetylacetonate (acac) anion in the gas phase: predicted structures, vibrational spectra, and photodetachment energies,
Int. J. Mass Spectrom., 1999, 187, 577-587, https://doi.org/10.1016/S1387-3806(98)14192-1
. [all data]
Zimmerman and Brauman, 1977
Zimmerman, A.H.; Brauman, J.I.,
Electron photodetachment from negative ions of C2v symmetry. Electron affinities of allyl and cyanomethyl radicals,
J. Am. Chem. Soc., 1977, 99, 3565. [all data]
Heni and Illenberger, 1986
Heni, M.; Illenberger, E.,
Electron attachment by saturated nitriles. Acrylonitrile (CH2H3CN), and benzonitrile (C6H5CN),
Int. J. Mass Spectrom. Ion Phys., 1986, 73, 127. [all data]
Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M.,
Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid,
J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426
. [all data]
Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D.,
The Nature and Analysis of Substituent Effects,
Prog. Phys. Org. Chem., 1987, 16, 1. [all data]
Oakes and Ellison, 1983
Oakes, J.M.; Ellison, B.G.,
Photoelectron spectroscopy of the allenyl anion CH2=C=CH-,
J. Am. Chem. Soc., 1983, 105, 2969. [all data]
Wang and Wang, 1999
Wang, X.B.; Wang, L.S.,
Vibrationally resolved photoelectron spectroscopy of PO3- and the electronic structure of PO3,
Chem. Phys. Lett., 1999, 313, 1-2, 179-183, https://doi.org/10.1016/S0009-2614(99)00993-8
. [all data]
Viggiano, Morris, et al., 1991
Viggiano, A.A.; Morris, R.A.; Dale, F.; Paulson, J.F.; Henshman, M.J.; Miller, T.M.; Miller, S.,
The Gas Phase Acidities of HPO3 and HPO2: Enthalpies of Deprotonation,
J. Phys. Chem., 1991, 95, 3, 1275, https://doi.org/10.1021/j100156a044
. [all data]
Henchman, Viggiano, et al., 1985
Henchman, M.; Viggiano, A.A.; Paulson, J.F.; Freedman, A.; Wormhoudt, J.,
Thermodynamic and kinetic properties of the metaphosphate anion, PO3-, in the gas phase,
J. Am. Chem. Soc., 1985, 107, 1453. [all data]
Born, Ingemann, et al., 2000
Born, M.; Ingemann, S.; Nibbering, N.M.M.,
Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase,
Int. J. Mass Spectrom., 2000, 194, 2-3, 103-113, https://doi.org/10.1016/S1387-3806(99)00125-6
. [all data]
Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B.,
Acidity order of selected bronsted acids in the gas phase at 300K,
J. Am. Chem. Soc., 1972, 94, 5153. [all data]
Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R.,
Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study.,
J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f
. [all data]
Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B.,
Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria,
J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032
. [all data]
Bartmess and Griffiths, 1990
Bartmess, J.E.; Griffiths, S.S.,
Tautomerization Energetics of Benzoannelated Toluenes,
J. Am. Chem. Soc., 1990, 112, 8, 2932, https://doi.org/10.1021/ja00164a014
. [all data]
Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A.,
Ionic Probes of Aromaticity in Annelated Rings,
J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001
. [all data]
Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E.,
The Gas Phase Acidities of Long Chain Alcohols.,
Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.