Hydrogen cation


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar108.95J/mol*KReviewChase, 1998Data last reviewed in March, 1982

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Fluorine anion + Hydrogen cation = hydrogen fluoride

By formula: F- + H+ = HF

Quantity Value Units Method Reference Comment
Δr1555. ± 5.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1530.0 ± 0.75kJ/molH-TSBlondel, Delsart, et al., 2001gas phase; Given: 3.4011895(25) eV, or 27432.446(19) cm-1, or 78.433266(577) kcal/mol
Δr1529.4kJ/molH-TSMartin and Hepburn, 2000gas phase; Given: 371.334±0.003 kcal/mol (corr to 298K with data from Wagman, Evans, et al., 1982).H(0K)=370.422±0.003
Δr1530.0 ± 0.75kJ/molH-TSBlondel, Cacciani, et al., 1989gas phase; Reported: 3.401190±0.000004 eV. acidity includes 0.9 kcal 0 to 298 K correction.
Δr1529. ± 8.4kJ/molIMREBierbaum, Schmidt, et al., 1981gas phase
Δr1503.7kJ/molN/ACheck, Faust, et al., 2001gas phase; FeCl3-; ; ΔS(EA)=5.0

phenoxide anion + Hydrogen cation = Phenol

By formula: C6H5O- + H+ = C6H6O

Quantity Value Units Method Reference Comment
Δr1462. ± 10.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1432. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; Shiner, Vorner, et al., 1986: tautomer acidities ΔHacid(ortho) = 343.9±3.1 kcal, para = 340.1±2 kcal. However, Capponi, Gut, et al., 1999 based on aq. soln. results, imply 18 and 14 kcal/mol difference.; value altered from reference due to change in acidity scale
Δr1426. ± 7.9kJ/molCIDCAngel and Ervin, 2004gas phase
Δr1437. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase
Δr>1429. ± 7.5kJ/molH-TSRichardson, Stephenson, et al., 1975gas phase

C2H- + Hydrogen cation = Acetylene

By formula: C2H- + H+ = C2H2

Quantity Value Units Method Reference Comment
Δr1580. ± 20.kJ/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1550. ± 20.kJ/molAVGN/AAverage of 7 values; Individual data points

CF3O- + Hydrogen cation = Carbonic difluoride

By formula: CF3O- + H+ = CF2O

Quantity Value Units Method Reference Comment
Δr1380. ± 8.4kJ/molG+TSHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr1454. ± 7.9kJ/molG+TSTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr<1431. ± 7.5kJ/molD-EAHuey, Dunlea, et al., 1996gas phase; EA > NO3
Δr1405.1kJ/molAcidLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Quantity Value Units Method Reference Comment
Δr1351. ± 6.7kJ/molIMRBHuey, Dunlea, et al., 1996gas phase; Agrees with G2 calculation: Segovia and Ventura, 1997, Burk, Koppel, et al., 2000, Chyall and Squires, 1996
Δr1425. ± 6.3kJ/molIMRBTaft, Koppel, et al., 1990gas phase; In conflict with Huey, Dunlea, et al., 1996. Bracketing here may be for CF3O- + AH -> CF2=O + HF + A-.
Δr1377. ± 5.0kJ/molH-TSLarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.

CH3O- + Hydrogen cation = Methyl Alcohol

By formula: CH3O- + H+ = CH4O

Quantity Value Units Method Reference Comment
Δr1597. ± 8.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1573.3 ± 2.6kJ/molH-TSNee, Osterwalder, et al., 2006gas phase
Δr1573.4 ± 2.3kJ/molH-TSOsborn, Leahy, et al., 1998gas phase
Δr1565. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale
Δr1567. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1569.4 ± 2.5kJ/molTDEqMeot-ner and Sieck, 1986gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O

HS- + Hydrogen cation = Hydrogen sulfide

By formula: HS- + H+ = H2S

Quantity Value Units Method Reference Comment
Δr1470. ± 3.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1441. ± 13.kJ/molH-TSRempala and Ervin, 2000gas phase
Δr1443. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1443.1 ± 0.42kJ/molH-TSShiell, Hu, et al., 1900gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05
Δr1446. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase
Δr1432.2kJ/molN/ACheck, Faust, et al., 2001gas phase; MnO2-(t); ; ΔS(EA)=5.4

H2P- + Hydrogen cation = Phosphine

By formula: H2P- + H+ = H3P

Quantity Value Units Method Reference Comment
Δr1522. ± 6.3kJ/molD-EAErvin and Lineberger, 2005gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84
Δr1551. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale
Δr1524. ± 19.kJ/molEIAEHalmann and Platzner, 1969gas phase
Δr<1534. ± 19.kJ/molEIAEEbinghaus, Kraus, et al., 1964gas phase
Δr1529.7kJ/molN/ACheck, Faust, et al., 2001gas phase; MnF5-(q); ; ΔS(EA)=2.9
Quantity Value Units Method Reference Comment
Δr1491. ± 6.7kJ/molH-TSErvin and Lineberger, 2005gas phase; High level calcns( Curtiss, Raghavachari, et al., 1991, Ricca and Bauschlicher, 1998) give DH ca. 84
Δr1520. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; The D-EA cycle does not close by 7 kcal/mol. The reason for this discrepancy is not known; value altered from reference due to change in acidity scale
Δr1500.8kJ/molN/ACheck, Faust, et al., 2001gas phase; MnF5-(q); ; ΔS(EA)=2.9

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Δr1678.7 ± 2.1kJ/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale
Δr1678.5 ± 0.88kJ/molD-EAGunion, Gilles, et al., 1992gas phase
Δr1677. ± 10.kJ/molTDEqMeot-ner and Sieck, 1986gas phase
Δr1680. ± 42.kJ/molCIDTGraul and Squires, 1990gas phase
Δr1665. ± 23.kJ/molG+TSBohme and Young, 1971gas phase
Quantity Value Units Method Reference Comment
Δr1641.8 ± 1.7kJ/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale
Δr1636. ± 8.4kJ/molTDEqMeot-ner and Sieck, 1986gas phase
Δr1632. ± 27.kJ/molIMRBBartmess and McIver Jr., 1979gas phase
Δr1628. ± 23.kJ/molIMRBBohme and Young, 1971gas phase

H3Si- + Hydrogen cation = Silane

By formula: H3Si- + H+ = H4Si

Quantity Value Units Method Reference Comment
Δr1564. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase
Δr1560. ± 8.8kJ/molG+TSWetzel, Salomon, et al., 1989gas phase; value altered from reference due to change in acidity scale
Δr1559.8 ± 3.5kJ/molD-EANimlos and Ellison, 1986gas phase
Δr1556. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1564.4kJ/molN/ACheck, Faust, et al., 2001gas phase; MnS-(t); ; ΔS(EA)=5.7
Quantity Value Units Method Reference Comment
Δr1530. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase
Δr1526. ± 8.4kJ/molIMREWetzel, Salomon, et al., 1989gas phase; value altered from reference due to change in acidity scale
Δr1525.4 ± 3.9kJ/molH-TSNimlos and Ellison, 1986gas phase
Δr1522. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1533.0kJ/molN/ACheck, Faust, et al., 2001gas phase; MnS-(t); ; ΔS(EA)=5.7

C6H4F- + Hydrogen cation = Benzene, fluoro-

By formula: C6H4F- + H+ = C6H5F

Quantity Value Units Method Reference Comment
Δr1618. ± 8.8kJ/molG+TSBuker, Nibbering, et al., 1997gas phase
Δr1620. ± 8.8kJ/molG+TSAndrade and Riveros, 1996gas phase
Δr1620. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr1620. ± 10.kJ/molBranWenthold and Squires, 1995, 2gas phase; By HO- cleavage of substituted silanes
Δr1620. ± 23.kJ/molG+TSBriscese and Riveros, 1975gas phase
Quantity Value Units Method Reference Comment
Δr1584. ± 8.4kJ/molIMREBuker, Nibbering, et al., 1997gas phase
Δr1586. ± 8.4kJ/molIMREAndrade and Riveros, 1996gas phase
Δr1585. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Δr1586. ± 11.kJ/molH-TSWenthold and Squires, 1995, 2gas phase; By HO- cleavage of substituted silanes
Δr1586. ± 22.kJ/molIMRBBriscese and Riveros, 1975gas phase

FO3S- + Hydrogen cation = fluorosulphuric acid

By formula: FO3S- + H+ = HFO3S

Quantity Value Units Method Reference Comment
Δr1285. ± 11.kJ/molG+TSViggiano, Henchman, et al., 1992gas phase
Δr1301.7kJ/molAcidLarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Δr<1312. ± 8.4kJ/molEIAEAdams, Smith, et al., 1986gas phase; From FSO3H (AP 0eV)
Quantity Value Units Method Reference Comment
Δr1255. ± 10.kJ/molIMRBViggiano, Henchman, et al., 1992gas phase
Δr1272.0 ± 1.3kJ/molH-TSLarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.
Δr<1282. ± 13.kJ/molH-TSAdams, Smith, et al., 1986gas phase; From FSO3H (AP 0eV)

C3H5- + Hydrogen cation = Cyclopropane

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1716. ± 10.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1676. ± 10.kJ/molAVGN/AAverage of 3 out of 6 values; Individual data points

HO4S- + Hydrogen cation = Sulfuric Acid

By formula: HO4S- + H+ = H2O4S

Quantity Value Units Method Reference Comment
Δr1295. ± 23.kJ/molD-EAWang, Nicholas, et al., 2000gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106
Δr1295. ± 11.kJ/molG+TSViggiano, Henchman, et al., 1992gas phase
Δr1325.5kJ/molLattHouse Jr. and Kemper, 1987gas phase; From lattice energy of NH4HSO4, with new PA(NH3)
Δr<1319.6kJ/molG+TSVigiano, Perry, et al., 1980gas phase; I- + H2SO4 ->.
Δr<1312. ± 8.4kJ/molEIAEAdams, Smith, et al., 1986gas phase; From H2SO4 (AP 0eV)
Quantity Value Units Method Reference Comment
Δr1265. ± 23.kJ/molH-TSWang, Nicholas, et al., 2000gas phase; Lit BDE seems too weak. This plus Viggiano, Henchman, et al., 1992 gives BDE=106
Δr1265. ± 10.kJ/molIMRBViggiano, Henchman, et al., 1992gas phase
Δr<1288.7kJ/molIMRBVigiano, Perry, et al., 1980gas phase; I- + H2SO4 ->.
Δr<1281. ± 9.6kJ/molH-TSAdams, Smith, et al., 1986gas phase; From H2SO4 (AP 0eV)

F2N- + Hydrogen cation = Difluoramine

By formula: F2N- + H+ = HF2N

Quantity Value Units Method Reference Comment
Δr1552. ± 8.8kJ/molG+TSKoppel, Taft, et al., 1994gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns
Δr1506. ± 8.8kJ/molIMREKoppel, Pikver, et al., 1981gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore.
Δr1530. ± 15.kJ/molD-EARuckhaberle, Lehmann, et al., 1997gas phase
Quantity Value Units Method Reference Comment
Δr1520. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase; Exptl, not interpolated dHf(F2NH) from Gurvich, Veyts, et al., is used. It agrees far better with MO calns
Δr1474. ± 8.4kJ/molH-TSKoppel, Pikver, et al., 1981gas phase; This acidity disagrees with the authors' later( Koppel, Taft, et al., 1994) value by 10 kcal/mol, but agrees with G3(MP2) computations much better.The acidity of HNF2 is not well known therefore.

C6H7Si- + Hydrogen cation = Silane, phenyl-

By formula: C6H7Si- + H+ = C6H8Si

Quantity Value Units Method Reference Comment
Δr1545. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase
Δr1540. ± 8.8kJ/molG+TSWetzel, Salomon, et al., 1989gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale
Δr1543. ± 13.kJ/molD-EAWetzel, Salomon, et al., 1989gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol
Δr1551. ± 17.kJ/molG+TSDamrauer, Kass, et al., 1988gas phase; Between HF and acetone
Quantity Value Units Method Reference Comment
Δr1515. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase
Δr1510. ± 8.4kJ/molIMREWetzel, Salomon, et al., 1989gas phase; 1.2 kcal/mol stronger than tBuCH(iPr)OH; value altered from reference due to change in acidity scale
Δr1513. ± 13.kJ/molH-TSWetzel, Salomon, et al., 1989gas phase; D-EA cycle give BDE=87.7±2.2 kcal/mol
Δr1521. ± 17.kJ/molIMRBDamrauer, Kass, et al., 1988gas phase; Between HF and acetone

CF3- + Hydrogen cation = Fluoroform

By formula: CF3- + H+ = CHF3

Quantity Value Units Method Reference Comment
Δr1582. ± 5.9kJ/molD-EADeyerl, Alconcel, et al., 2001gas phase; Adiabatic EA, from vibrational structure of spectrum
Δr1577. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give ΔHacid=379.9, ΔGacid=372.0; value altered from reference due to change in acidity scale
Δr1573. ± 19.kJ/molCIDTGraul and Squires, 1990gas phase
Quantity Value Units Method Reference Comment
Δr1549. ± 6.3kJ/molH-TSDeyerl, Alconcel, et al., 2001gas phase; Adiabatic EA, from vibrational structure of spectrum
Δr1545. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; Paulino and Squires, 1991 suggests that this acidity may be too weak by ca. 5 kcal/mol. However, G2 calcn(JEB) give ΔHacid=379.9, ΔGacid=372.0; value altered from reference due to change in acidity scale

C2H3O- + Hydrogen cation = Acetaldehyde

By formula: C2H3O- + H+ = C2H4O

Quantity Value Units Method Reference Comment
Δr1533.1 ± 3.4kJ/molD-EAMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1)
Δr1531. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale
Δr1533. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Quantity Value Units Method Reference Comment
Δr1505. ± 5.0kJ/molH-TSMead, Lykke, et al., 1984gas phase; Uncertainty: 6 millical/mol (0.26 micro-eV).Dipolebound state at ca. 14.3 cal/mol (5 cm-1)
Δr1502. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; Acid: ethanal. The enol is 9.6 kcal/mol more acidic: Holmes and Lossing, 1982; value altered from reference due to change in acidity scale
Δr1505. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

HCO2 anion + Hydrogen cation = Formic acid

By formula: CHO2- + H+ = CH2O2

Quantity Value Units Method Reference Comment
Δr1449. ± 5.0kJ/molD-EAKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol
Δr1445. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1445. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1444. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase
Δr1423. ± 19.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr1419. ± 6.3kJ/molH-TSKim, Bradforth, et al., 1995gas phase; dHacid(0K) = 344.67±0.62 kcal/mol
Δr1415. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1416. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1415. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase

H3Ge- + Hydrogen cation = Germane

By formula: H3Ge- + H+ = H4Ge

Quantity Value Units Method Reference Comment
Δr1501. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase
Δr1502. ± 5.4kJ/molG+TSDecouzon, Gal, et al., 1993gas phase; The neutral acid ΔHf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997
Δr>1490. ± 11.kJ/molD-EAReed and Brauman, 1974gas phase
Δr1514.6kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)-(q); ; ΔS(EA)=5.0
Quantity Value Units Method Reference Comment
Δr1467. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase
Δr1468. ± 5.0kJ/molIMREDecouzon, Gal, et al., 1993gas phase; The neutral acid ΔHf may be ca. 4 kcal/mol too positive: G2 calculations, Mayer, Gal, et al., 1997
Δr>1456. ± 12.kJ/molH-TSReed and Brauman, 1974gas phase
Δr1480.7kJ/molN/ACheck, Faust, et al., 2001gas phase; Fe(CO)-(q); ; ΔS(EA)=5.0

CH5Si- + Hydrogen cation = Silane, methyl-

By formula: CH5Si- + H+ = CH6Si

Quantity Value Units Method Reference Comment
Δr1579. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase
Δr1582. ± 13.kJ/molD-EAWetzel, Salomon, et al., 1989gas phase
Δr1582. ± 8.8kJ/molG+TSWetzel, Salomon, et al., 1989gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale
Δr1613. ± 17.kJ/molG+TSDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.
Quantity Value Units Method Reference Comment
Δr1544. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase
Δr1546. ± 13.kJ/molH-TSWetzel, Salomon, et al., 1989gas phase
Δr1546. ± 8.4kJ/molIMREWetzel, Salomon, et al., 1989gas phase; 0.8 kcal/mol weaker than iPrOH; value altered from reference due to change in acidity scale
Δr1577. ± 17.kJ/molIMRBDamrauer, Kass, et al., 1988gas phase; Between furan and methanol.

C3HF6- + Hydrogen cation = Propane, 1,1,1,3,3,3-hexafluoro-

By formula: C3HF6- + H+ = C3H2F6

Quantity Value Units Method Reference Comment
Δr1522. ± 17.kJ/molG+TSMcDonald, Chowdhury, et al., 1984gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale
Δr1471. ± 9.2kJ/molG+TSKoppel, Taft, et al., 1994gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF?
Quantity Value Units Method Reference Comment
Δr1490. ± 17.kJ/molIMRBMcDonald, Chowdhury, et al., 1984gas phase; Weaker than Koppel, Taft, et al., 1994 by 12 kcal/mol, but agree with G3MP2B3 calculations better. Between PhCOCH3, CF3CH2OH.; value altered from reference due to change in acidity scale
Δr1439. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase; 12 kcal/mol stronger than McDonald, Chowdhury, et al., 1984. Dissociative proton transfer to CF3CH=CF2 and HF?

C5H9O2- + Hydrogen cation = 2H-Pyran-2-ol, tetrahydro-

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Δr1540. ± 13.kJ/molD-EABaer, Brinkman, et al., 1991gas phase; Structure: cyclic H-bonded 5-hydroxypentanal enolate
Δr1496. ± 8.8kJ/molG+TSBaer, Brinkman, et al., 1991gas phase; For deprotonation of neutral acetal.
Δr1502. ± 13.kJ/molG+TSBartmess, Hays, et al., 1981gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization.
Quantity Value Units Method Reference Comment
Δr1469. ± 8.4kJ/molIMRBBaer, Brinkman, et al., 1991gas phase; For deprotonation of neutral acetal.
Δr1452. ± 13.kJ/molIMRBBaer, Brinkman, et al., 1991gas phase; For reprotonation of anion: structure is cyclic H-bonded cyclic enolate
Δr1474. ± 13.kJ/molIMRBBartmess, Hays, et al., 1981gas phase; Between CF3CH2OH, MeSH for deprotonation, reprotonates at ca. HOAc due to isomerization.

H2As- + Hydrogen cation = Arsine

By formula: H2As- + H+ = H3As

Quantity Value Units Method Reference Comment
Δr1496. ± 8.8kJ/molG+TSGal, Maria, et al., 1989gas phase
Δr1497. ± 13.kJ/molD-EASmyth and Brauman, 1972gas phase
Δr1514. ± 26.kJ/molG+TSWyatt, Holtz, et al., 1974gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale
Δr<1505. ± 19.kJ/molEIAEEbinghaus, Kraus, et al., 1964gas phase; From AsH3
Δr1502.1kJ/molN/ACheck, Faust, et al., 2001gas phase; CrOO-(q); ; ΔS(EA)=1.7
Quantity Value Units Method Reference Comment
Δr1464. ± 8.4kJ/molIMREGal, Maria, et al., 1989gas phase
Δr1483. ± 25.kJ/molIMRBWyatt, Holtz, et al., 1974gas phase; Between PH3, H2S; value altered from reference due to change in acidity scale
Δr1473.6kJ/molN/ACheck, Faust, et al., 2001gas phase; CrOO-(q); ; ΔS(EA)=1.7

C6H13O- + Hydrogen cation = 3,3-Dimethylbutane-2-ol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1556. ± 8.4kJ/molD-EAMihalick, Gatev, et al., 1996gas phase; Derived BDE: 103.3±2.8 kcal/mol
Δr1554. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1553. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1528. ± 8.4kJ/molIMREClifford, Wenthold, et al., 1998gas phase
Δr1528. ± 8.8kJ/molH-TSMihalick, Gatev, et al., 1996gas phase; Derived BDE: 103.3±2.8 kcal/mol
Δr1526. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1525. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C3H3- + Hydrogen cation = Propyne

By formula: C3H3- + H+ = C3H4

Quantity Value Units Method Reference Comment
Δr1591. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase
Δr1597. ± 9.6kJ/molD-EARobinson, Polak, et al., 1995gas phase
Δr1595. ± 8.8kJ/molG+TSRobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme
Δr1594. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1559. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase
Δr1562. ± 8.4kJ/molIMRERobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0. isomerization accounted for in kinetic scheme
Δr1562. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C7H7- + Hydrogen cation = Toluene

By formula: C7H7- + H+ = C7H8

Quantity Value Units Method Reference Comment
Δr1599.7 ± 1.9kJ/molD-EAGunion, Gilles, et al., 1992gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA
Δr1593. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1587. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase
Δr1577. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase
Δr1609. ± 30.kJ/molG+TSBohme and Young, 1971gas phase
Quantity Value Units Method Reference Comment
Δr1564. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1557. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase
Δr1579. ± 29.kJ/molIMRBBohme and Young, 1971gas phase

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1636.4 ± 1.3kJ/molG+TSEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu
Δr1634. ± 4.2kJ/molD-EAWenthold, Polak, et al., 1996gas phase
Δr1635. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1632.8 ± 2.7kJ/molG+TSMackay, Lien, et al., 1978gas phase
Quantity Value Units Method Reference Comment
Δr1605.8 ± 0.42kJ/molIMREEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu
Δr1606. ± 4.6kJ/molH-TSWenthold, Polak, et al., 1996gas phase
Δr1607. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1605.0 ± 2.1kJ/molIMREMackay, Lien, et al., 1978gas phase

C4H9O- + Hydrogen cation = 1-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr1570. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1571. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1569. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1543. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1543. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1541. ± 12.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C4H4N- + Hydrogen cation = 3-Butenenitrile

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Δr1495. ± 13.kJ/molG+TSLuna, Mo, et al., 2006gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH
Δr1501. ± 13.kJ/molG+TSChou, Dahlke, et al., 1993gas phase; Acid: CH2=CHCH2CN
Δr1521. ± 21.kJ/molG+TSDahlke and Kass, 1991gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain.
Quantity Value Units Method Reference Comment
Δr1464. ± 13.kJ/molIMRBLuna, Mo, et al., 2006gas phase; Acid CH3CH=CHCN. Between MeSH, EtSH
Δr1472. ± 13.kJ/molIMRBChou, Dahlke, et al., 1993gas phase; Acid: CH2=CHCH2CN
Δr1491. ± 21.kJ/molIMRBDahlke and Kass, 1991gas phase; Between MeCHO, HCONH2. Reprotonation site uncertain.
Δr<1527. ± 8.4kJ/molIMRBDawson and Nibbering, 1980gas phase; Acid: CH2=CHCH2CN

C4H9O- + Hydrogen cation = 2-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1566. ± 8.8kJ/molG+TSTaft, 1987gas phase; value altered from reference due to change in acidity scale
Δr1565. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1538. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1538. ± 8.4kJ/molIMRETaft, 1987gas phase; value altered from reference due to change in acidity scale
Δr1538. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

Chlorine anion + Hydrogen cation = Hydrogen chloride

By formula: Cl- + H+ = HCl

Quantity Value Units Method Reference Comment
Δr1394.9kJ/molN/AMartin and Hepburn, 1998gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol
Δr1396. ± 8.8kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1377.0kJ/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; ΔS(EA)=5.0
Quantity Value Units Method Reference Comment
Δr1372.8 ± 0.42kJ/molH-TSMartin and Hepburn, 1998gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol
Δr1374. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1354.4kJ/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; ΔS(EA)=5.0

C2H5O- + Hydrogen cation = Ethanol

By formula: C2H5O- + H+ = C2H6O

Quantity Value Units Method Reference Comment
Δr1587. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase
Δr1582. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1579. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1586.2 ± 0.42kJ/molCIDTDeTuri and Ervin, 1999gas phase
Quantity Value Units Method Reference Comment
Δr1559. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase
Δr1554. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Δr1551. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

C4H9O- + Hydrogen cation = 2-Propanol, 2-methyl-

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr1568. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase
Δr1567. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1573.2 ± 2.9kJ/molCIDTDeTuri and Ervin, 1999gas phase
Δr1566. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr1540. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase
Δr1540. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1538. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C3H7O- + Hydrogen cation = Isopropyl Alcohol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr1569. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase
Δr1571. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1576. ± 4.2kJ/molCIDTDeTuri and Ervin, 1999gas phase
Δr1572. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.
Quantity Value Units Method Reference Comment
Δr1542. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase
Δr1543. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1544. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr1704. ± 9.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1677.8 ± 2.1kJ/molIMREErvin, Gronert, et al., 1990gas phase
Δr1670. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase
Δr1668. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase

HSe- + Hydrogen cation = dihydrogen selenide

By formula: HSe- + H+ = H2Se

Quantity Value Units Method Reference Comment
Δr1428.8 ± 2.9kJ/molD-EAStoneman and Larson, 1986gas phase; Wagman, Evans, et al., 1982 ΔHf(AH) = 7.1 kcal/mol
Δr1434. ± 38.kJ/molG+TSDixon, Holtz, et al., 1972gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale
Δr1424.7kJ/molN/ACheck, Faust, et al., 2001gas phase; MnO-(t); ; ΔS(EA)=5.5
Quantity Value Units Method Reference Comment
Δr1402.4 ± 3.3kJ/molH-TSStoneman and Larson, 1986gas phase; Wagman, Evans, et al., 1982 ΔHf(AH) = 7.1 kcal/mol
Δr1407. ± 38.kJ/molIMRBDixon, Holtz, et al., 1972gas phase; Between H2S, HCl; value altered from reference due to change in acidity scale
Δr1398.3kJ/molN/ACheck, Faust, et al., 2001gas phase; MnO-(t); ; ΔS(EA)=5.5

CHO3- + Hydrogen cation = Methaneperoxoic acid

By formula: CHO3- + H+ = CH2O3

Quantity Value Units Method Reference Comment
Δr1467. ± 14.kJ/molG+TSVillano, Eyet, et al., 2010gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid
Δr<1551. ± 9.2kJ/molG+TSBowie, DePuy, et al., 1986gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m
Quantity Value Units Method Reference Comment
Δr1439. ± 14.kJ/molIMRBVillano, Eyet, et al., 2010gas phase; Between HOAc, tBuSH. For less-stable (+3.3 kcal) non-H-bonded) isomer of acid
Δr<1523. ± 8.4kJ/molIMRBBowie, DePuy, et al., 1986gas phase; More acidic than acetone. Formed from DMF + HOO-; oxidises NO to NO2. Computations indicate HOF(A-) ca. -77, dHacid ca. 349 kcal/m

C5H7O2- + Hydrogen cation = Acetylacetone

By formula: C5H7O2- + H+ = C5H8O2

Quantity Value Units Method Reference Comment
Δr1438. ± 8.8kJ/molG+TSTaft and Bordwell, 1988gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952)
Δr1438. ± 9.6kJ/molG+TSCumming and Kebarle, 1978gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999
Quantity Value Units Method Reference Comment
Δr1409. ± 8.4kJ/molIMRETaft and Bordwell, 1988gas phase; at 330K: neutral enol/keto ratio should be 8:1 ( Strohmeier and Höhne, 1952)
Δr1408. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; At 500K: neutral enol/keto ratio is 1.7:1, Folkendt, Weiss-Lopez, et al., 1989. ΔH=-4.7 kcal/mol, enol favored. Carbonyls anti in anion, via calc: Irikura, 1999

C2H2N- + Hydrogen cation = Acetonitrile

By formula: C2H2N- + H+ = C2H3N

Quantity Value Units Method Reference Comment
Δr1560. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1544. ± 19.kJ/molCIDTGraul and Squires, 1990gas phase
Δr1562. ± 11.kJ/molG+TSCumming and Kebarle, 1978gas phase
Δr1568. ± 8.4kJ/molD-EAZimmerman and Brauman, 1977gas phase
Δr1534. ± 19.kJ/molEIAEHeni and Illenberger, 1986gas phase; From MeCN
Quantity Value Units Method Reference Comment
Δr1528. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1530. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase
Δr1536. ± 8.8kJ/molH-TSZimmerman and Brauman, 1977gas phase

MeCO2 anion + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr1457. ± 5.9kJ/molCIDCAngel and Ervin, 2006gas phase
Δr1456. ± 9.2kJ/molG+TSTaft and Topsom, 1987gas phase
Δr1459. ± 8.8kJ/molG+TSCumming and Kebarle, 1978gas phase
Δr1459. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1435.9 ± 2.9kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr1427. ± 8.4kJ/molIMRETaft and Topsom, 1987gas phase
Δr1429. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase
Δr1430. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale

C3H3- + Hydrogen cation = Allene

By formula: C3H3- + H+ = C3H4

Quantity Value Units Method Reference Comment
Δr1590. ± 8.4kJ/molD-EARobinson, Polak, et al., 1995gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.
Δr1596. ± 13.kJ/molG+TSRobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization
Δr1592. ± 8.8kJ/molD-EAOakes and Ellison, 1983gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.
Quantity Value Units Method Reference Comment
Δr1560. ± 13.kJ/molIMRERobinson, Polak, et al., 1995gas phase; Relative to MeOH at 375.0; kinetic scheme factors in isomerization
Δr1556. ± 9.2kJ/molH-TSOakes and Ellison, 1983gas phase; Neutral acid: allene. Propyne would be 1.0 kcal/mol less acidic.

O3P- + Hydrogen cation = metaphosphoric acid

By formula: O3P- + H+ = HPO3

Quantity Value Units Method Reference Comment
Δr1300. ± 18.kJ/molD-EAWang and Wang, 1999gas phase
Δr1300. ± 11.kJ/molG+TSViggiano, Henchman, et al., 1992gas phase
Δr1300. ± 15.kJ/molEndoViggiano, Morris, et al., 1991gas phase
Δr<1323. ± 13.kJ/molG+TSHenchman, Viggiano, et al., 1985gas phase; The neutral thermochemistry appears to be in conflict with computational values
Quantity Value Units Method Reference Comment
Δr1270. ± 18.kJ/molH-TSWang and Wang, 1999gas phase
Δr1270. ± 10.kJ/molIMRBViggiano, Henchman, et al., 1992gas phase
Δr<1293. ± 13.kJ/molIMRBHenchman, Viggiano, et al., 1985gas phase; The neutral thermochemistry appears to be in conflict with computational values

CHCl2- + Hydrogen cation = Methylene chloride

By formula: CHCl2- + H+ = CH2Cl2

Quantity Value Units Method Reference Comment
Δr1572. ± 9.2kJ/molG+TSBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol
Δr1567. ± 13.kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1540. ± 8.4kJ/molIMREBorn, Ingemann, et al., 2000gas phase; D-EA from this reference yields BDE = 96.0±3.2 kcal/mol
Δr1543.9 ± 2.9kJ/molIMREPoutsma, Paulino, et al., 1997gas phase; relative to tBuOH at ΔGacid = 369.3
Δr1535. ± 13.kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; Comparable to DMSO; value altered from reference due to change in acidity scale

C7H7O- + Hydrogen cation = p-Cresol

By formula: C7H7O- + H+ = C7H8O

Quantity Value Units Method Reference Comment
Δr1465. ± 8.8kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1465. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1471. ± 9.6kJ/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr1437. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1437. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale
Δr1442. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase

benzoate anion + Hydrogen cation = Benzoic acid

By formula: C7H5O2- + H+ = C7H6O2

Quantity Value Units Method Reference Comment
Δr1423. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1423. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder
Δr1423. ± 9.2kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Quantity Value Units Method Reference Comment
Δr1393. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1393. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder
Δr1394. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase

C11H9- + Hydrogen cation = Naphthalene, 1-methyl-

By formula: C11H9- + H+ = C11H10

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1
Δr1551. ± 10.kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.
Quantity Value Units Method Reference Comment
Δr1531. ± 8.4kJ/molIMREBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1
Δr1516. ± 8.4kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.

C6H13O- + Hydrogen cation = 1-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1565. ± 13.kJ/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1561. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1537. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1538. ± 13.kJ/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1533. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C7H15O- + Hydrogen cation = 1-Heptanol

By formula: C7H15O- + H+ = C7H16O

Quantity Value Units Method Reference Comment
Δr1567. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1564. ± 13.kJ/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1559. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1540. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1536. ± 13.kJ/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1531. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C8H17O- + Hydrogen cation = 1-Octanol

By formula: C8H17O- + H+ = C8H18O

Quantity Value Units Method Reference Comment
Δr1566. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1563. ± 13.kJ/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1556. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1538. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1535. ± 13.kJ/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1528. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

C9H19O- + Hydrogen cation = 1-Nonanol

By formula: C9H19O- + H+ = C9H20O

Quantity Value Units Method Reference Comment
Δr1567. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase
Δr1561. ± 13.kJ/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1553. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1540. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase
Δr1534. ± 13.kJ/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.
Δr1525. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Blondel, Delsart, et al., 2001
Blondel, C.; Delsart, C.; Goldfarb, F., Electron spectrometry at the mu eV level and the electron affinities of Si and F, J. Phys. B: Atom. Mol. Opt. Phys., 2001, 34, 9, L281-L288, https://doi.org/10.1088/0953-4075/34/9/101 . [all data]

Martin and Hepburn, 2000
Martin, J.D.D.; Hepburn, J.W., Faraday Disc. Chem. Soc., 2000, 115, 416. [all data]

Wagman, Evans, et al., 1982
Wagman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., The NBS Tables of Chemical Thermodynamic Properties (NBS Tech Note 270), J. Phys. Chem. Ref. Data, Supl. 1, 1982, 11. [all data]

Blondel, Cacciani, et al., 1989
Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R., High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams, Phys. Rev. A, 1989, 40, 7, 3698, https://doi.org/10.1103/PhysRevA.40.3698 . [all data]

Bierbaum, Schmidt, et al., 1981
Bierbaum, V.M.; Schmidt, R.J.; DePuy, C.H.; Mead, R.H.; Schulz, P.A.; Lineberger, W.C., Reactions of carbanions with triplet and singlet molecular oxygen, J. Am. Chem. Soc., 1981, 103, 6262. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiner, Vorner, et al., 1986
Shiner, C.S.; Vorner, P.E.; Kass, S.R., Gas phase acidities and heats of formation of 2,4- and 2,5- cyclohexadien-1-one, the keto tautomers of phenol, J. Am. Chem. Soc., 1986, 108, 5699. [all data]

Capponi, Gut, et al., 1999
Capponi, M.; Gut, I.G.; Hellrung, B.; Persy, G.; Wirz, J., Ketonization equilibria of phenol in aqueous solution, Can. J. Chem., 1999, 77, 5-6, 605-613, https://doi.org/10.1139/v99-048 . [all data]

Angel and Ervin, 2004
Angel, L.A.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidity and O-H bond dissociation enthalpy of phenol, J. Phys. Chem. A, 2004, 108, 40, 8346-8352, https://doi.org/10.1021/jp0474529 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Richardson, Stephenson, et al., 1975
Richardson, J.H.; Stephenson, L.M.; Brauman, J.I., Photodetachment of electrons from phenoxides and thiophenoxide, J. Am. Chem. Soc., 1975, 97, 2967. [all data]

Huey, Dunlea, et al., 1996
Huey, L.G.; Dunlea, E.J.; Howard, C.J., Gas-Phase Acidity of CF3OH, J. Phys. Chem., 1996, 100, 16, 6504, https://doi.org/10.1021/jp953058m . [all data]

Segovia and Ventura, 1997
Segovia, M.; Ventura, O.N., Density functional and G2 study of the strength of the OH bond in CF3OH, Chem. Phys. Lett., 1997, 277, 5-6, 490-496, https://doi.org/10.1016/S0009-2614(97)00860-9 . [all data]

Burk, Koppel, et al., 2000
Burk, P.; Koppel, I.A.; Rummel, A.; Trummal, A., Can O-H acid be more acidic than its S-H analog? A G2 study of fluoromethanols and fluoromethanethiols, J. Phys. Chem. A, 2000, 104, 7, 1602-1607, https://doi.org/10.1021/jp993487a . [all data]

Chyall and Squires, 1996
Chyall, L.J.; Squires, R.R., The Proton Affinity and Absolute Heat of Formation of Trifluoromethanpl, J. Phys. Chem., 1996, 100, 16435. [all data]

Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F., Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids, J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M., Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H, J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016 . [all data]

Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W., A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule, J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H., High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-, Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609 . [all data]

Ervin and Lineberger, 2005
Ervin, K.M.; Lineberger, W.C., Photoelectron spectroscopy of phosphorus hydride anions, J. Chem. Phys., 2005, 122, 19, 194303, https://doi.org/10.1063/1.1881153 . [all data]

Curtiss, Raghavachari, et al., 1991
Curtiss, L.A.; Raghavachari, K.; Trucks, G.W.; Pople, J.A., Gaussian-2 Theory for Molecular Energies of First- and Second-row Compounds, J. Chem. Phys., 1991, 94, 11, 7221, https://doi.org/10.1063/1.460205 . [all data]

Ricca and Bauschlicher, 1998
Ricca, A.; Bauschlicher, C.W., Jr., Accurate Heats of Formation for PHn, PHn+, and PHn-, Chem. Phys. Lett., 1998, 285, 5-6, 455, https://doi.org/10.1016/S0009-2614(97)01468-1 . [all data]

Halmann and Platzner, 1969
Halmann, M.; Platzner, I., Negative Ions Produced by Electron Capture in Phosphine, J. Phys. Chem., 1969, 73, 12, 4376, https://doi.org/10.1021/j100846a062 . [all data]

Ebinghaus, Kraus, et al., 1964
Ebinghaus, H.; Kraus, K.; Neuert, H.; Muller-Duysing, W., Negative Ionen durch Elecktronenresonanzeinfang in PH3, AsH3, und SiH4, Z. Naturfor., 1964, 19A, 732. [all data]

Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R., The C-H bond energy of benzene, J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023 . [all data]

Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F., Anchoring the gas-phase acidity scale, J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n . [all data]

Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P., Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5, J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o . [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C., Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes, J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j . [all data]

Wetzel, Salomon, et al., 1989
Wetzel, D.M.; Salomon, K.E.; Berger, S.; Brauman, J.I., Gas-Phase Acidities of Organosilanes and Electron Affinities of Organosilyl Radicals, J. Am. Chem. Soc., 1989, 111, 11, 3835, https://doi.org/10.1021/ja00193a013 . [all data]

Nimlos and Ellison, 1986
Nimlos, M.R.; Ellison, G.B., Photoelectron spectroscopy of SiH3- and SiD3-, J. Am. Chem. Soc., 1986, 108, 6522. [all data]

Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M., Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution, Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3 . [all data]

Andrade and Riveros, 1996
Andrade, P.B.M.; Riveros, J.M., Relative Gas-phase Acidities of Fluoro- and Chlorobenzene, J. Mass Spectrom., 1996, 31, 7, 767, https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<767::AID-JMS345>3.0.CO;2-Q . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Wenthold and Squires, 1995, 2
Wenthold, P.G.; Squires, R.R., Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method, J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105 . [all data]

Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M., Gas phase nucleophilic reactions of aromatic systems, J. Am. Chem. Soc., 1975, 97, 230. [all data]

Viggiano, Henchman, et al., 1992
Viggiano, A.A.; Henchman, M.J.; Dale, F.; Deakyne, C.A.; Paulson, J.F., Gas-Phase Reactions of Weak Bronsted Bases I-, PO3-, HSO4-, FSO3-, and CF3SO3- with Strong Bronsted Acids H2SO4, FSO3H, and CF3SO3H - A Quantitative Study, J. Am. Chem. Soc., 1992, 114, 11, 4299, https://doi.org/10.1021/ja00037a039 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Adams, Smith, et al., 1986
Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J., Dissociative attachment reactions of electron with strong acid molecules, J. Chem. Phys., 1986, 84, 6728. [all data]

Wang, Nicholas, et al., 2000
Wang, X.B.; Nicholas, J.B.; Wang, L.S., Photoelectron spectroscopy and theoretical calculations of SO4- and HSO4-: Confirmation of high electron affinities of SO4 and HSO4, J. Phys. Chem. A, 2000, 104, 3, 504-508, https://doi.org/10.1021/jp992726r . [all data]

House Jr. and Kemper, 1987
House Jr.; Kemper, K.A., Proton Affinities of Sulfate and Bisulfate Ions, J. Thermal Anal., 1987, 32, 6, 1855, https://doi.org/10.1007/BF01913977 . [all data]

Vigiano, Perry, et al., 1980
Vigiano, A.A.; Perry, R.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., The role of H2SO4 in stratospheric negative ion chemistry, J. Geophys. Res., 1980, 85, 4551. [all data]

Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M., The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids, J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038 . [all data]

Koppel, Pikver, et al., 1981
Koppel, I.; Pikver, R.; Sugis, A.; Suurmaa, E.; Lippmaa, E., FTICR Study of Structure and Solvent Effects on Basicity of Some Anions in the Gas Phase, Org. Reac., 1981, 18, 3. [all data]

Ruckhaberle, Lehmann, et al., 1997
Ruckhaberle, N.; Lehmann, L.; Matejcik, S.; Illenberger, E.; Bouteiller, Y.; Periquet, V.; Museur, L.; Desfran, Free Electron Attachment and Rydberg Electron Transfer to NF3 Molecules and Clusters, J. Phys. Chem. A, 1997, 101, 51, 9942, https://doi.org/10.1021/jp972422+ . [all data]

Damrauer, Kass, et al., 1988
Damrauer, R.; Kass, S.R.; DePuy, C.H., Gas-Phase Acidities of Methylsilanes: C-H versus Si-H, Organomet., 1988, 7, 3, 637, https://doi.org/10.1021/om00093a011 . [all data]

Deyerl, Alconcel, et al., 2001
Deyerl, H.J.; Alconcel, L.S.; Continetti, R.E., Photodetachment imaging studies of the electron affinity of CF3, J. Phys. Chem. A, 2001, 105, 3, 552-557, https://doi.org/10.1021/jp003137k . [all data]

Paulino and Squires, 1991
Paulino, J.A.; Squires, R.R., Carbene Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements - The Heats of Formation of X1A1 CF2 and X1A1 CCl2, J. Am. Chem. Soc., 1991, 113, 15, 5573, https://doi.org/10.1021/ja00015a009 . [all data]

Mead, Lykke, et al., 1984
Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I., Spectroscopy and Dynamics of the Dipole-Bound State of Acetaldehyde Enolate., J. Chem. Phys., 1984, 81, 11, 4883., https://doi.org/10.1063/1.447515 . [all data]

Holmes and Lossing, 1982
Holmes, J.L.; Lossing, F.P., Heats of formation of the ionic and neutral enols of acetaldehyde and acetone, J. Am. Chem. Soc., 1982, 104, 2648. [all data]

Kim, Bradforth, et al., 1995
Kim, E.H.; Bradforth, S.E.; Arnold, D.W.; Metz, R.B.; Neumark, D.M., Study of HCO2 and DCO2 by Negative Ion Photoelectron Spectroscopy, J. Chem. Phys., 1995, 103, 18, 7801, https://doi.org/10.1063/1.470196 . [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Decouzon, Gal, et al., 1993
Decouzon, M.; Gal, J.F.; Gayraud, J.; Maria, P.C.; Vaglio, G.A.; Volpe, P., Fourier Transform-Ion Cyclotron Resonance Study of the Gas-Phase Acidities of Germane and Methylgermane - Bond Dissociation Energy of German, J. Am. Soc. Mass Spectrom., 1993, 4, 1, 54, https://doi.org/10.1016/1044-0305(93)85042-V . [all data]

Mayer, Gal, et al., 1997
Mayer, P.M.; Gal, J.-F.; Radom, L., The Heats of Formation, Gas-phase Acidities, and Related Thermochemical Properties of the Third-row Hydrides GeH4, AsH3, SeH2, and HBr from G2 ab initio Calculations, Int. J. Mass Spectrom. Ion Proc., 1997, 167/168, 689, https://doi.org/10.1016/S0168-1176(97)00127-4 . [all data]

Reed and Brauman, 1974
Reed, K.J.; Brauman, J.I., Photodetachment of electrons from Group IVa binary hydride anions: The electron affinities of the SiH3 and GeH3 radicals, J. Chem. Phys., 1974, 61, 4830. [all data]

McDonald, Chowdhury, et al., 1984
McDonald, R.N.; Chowdhury, A.K.; McGhee, W.D., Gas-Phase Generation of 1,1,1,3,3,3-Hexafluoroisopropylidene Anion Radical: Proton Affinity and Heat of Formation of (CF3)2C- and (CF3)2CH-, J. Am. Chem. Soc., 1984, 106, 15, 4112, https://doi.org/10.1021/ja00327a008 . [all data]

Baer, Brinkman, et al., 1991
Baer, S.; Brinkman, E.A.; Brauman, J.I., Hemiacetal Anions: A Model for Tetrahedral Reaction Intermediates, J. Am. Chem. Soc., 1991, 113, 3, 805, https://doi.org/10.1021/ja00003a012 . [all data]

Bartmess, Hays, et al., 1981
Bartmess, J.E.; Hays, R.L.; Caldwell, G., The Addition of Carbanions to Carbonyl Groups in the Gas Phase, J. Am. Chem. Soc., 1981, 103, 6, 1338, https://doi.org/10.1021/ja00396a006 . [all data]

Gal, Maria, et al., 1989
Gal, J.-F.; Maria, P.-C.; Decouzon, M., The Gas-Phase Acidity and Bond Dissociation Energies of Hydrogen Telluride, Int. J. Mass Spectrom. Ion Proc., 1989, 93, 1, 87, https://doi.org/10.1016/0168-1176(89)83076-9 . [all data]

Smyth and Brauman, 1972
Smyth, K.C.; Brauman, J.I., Photodetachment of electrons from amide and arsenide ions: The electron affinities of NH2 and AsH2., J. Chem. Phys., 1972, 56, 4620. [all data]

Wyatt, Holtz, et al., 1974
Wyatt, R.H.; Holtz, D.; McMahon, T.B.; Beauchamp, J.L., Acidity, basicity, and ion-molecule reactions of arsine in the gas phase by ICR spectroscopy, Inorg. Chem., 1974, 13, 1511. [all data]

Mihalick, Gatev, et al., 1996
Mihalick, J.E.; Gatev, G.G.; Brauman, J.I., Electron Photodetachment Spectroscopy of Solvated Anions: RO.HF- or ROH.F-?, J. Am. Chem. Soc., 1996, 118, 49, 12424, https://doi.org/10.1021/ja954202k . [all data]

Clifford, Wenthold, et al., 1998
Clifford, E.P.; Wenthold, P.G.; Gareyev, R.; Lineberger, W.C.; DePuy, C.H.; Bierbaum, V.M.; Ellison, G.B., Photoelectron spectroscopy, gas phase acidity, and thermochemistry of tert-butyl hydroperoxide: Mechanisms for the rearrangement of peroxyl radicals, J. Chem. Phys., 1998, 109, 23, 10293-10310, https://doi.org/10.1063/1.477725 . [all data]

Robinson, Polak, et al., 1995
Robinson, M.S.; Polak, M.L.; Bierbaum, V.M.; DePuy, C.H.; Lineberger, W.C., Experimental Studies of Allene, Methylacetylene, and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase Acidities, and Ion-Molecule Chemistry, J. Am. Chem. Soc., 1995, 117, 25, 6766, https://doi.org/10.1021/ja00130a017 . [all data]

Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C., Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions, J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o . [all data]

Ellison, Davico, et al., 1996
Ellison, G.B.; Davico, G.E.; Bierbaum, V.M.; DePuy, C.H., Thermochemistry of theb Benzyl and Allyl Radicals and Ions, Int. J. Mass Spectrom. Ion Proc., 1996, 156, 1-2, 109-131, https://doi.org/10.1016/S0168-1176(96)04383-2 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Mackay, Lien, et al., 1978
Mackay, G.I.; Lien, M.H.; Hopkinson, A.C.; Bohme, D.K., Experimental and theoretical studies of proton removal from propene, Can. J. Chem., 1978, 56, 131. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Luna, Mo, et al., 2006
Luna, A.; Mo, O.; Yanez, M.; Gal, J.F.; Maria, P.C.; Guillemin, J.C., Gas-phase protonation and deprotonation of acrylonitrile derivatives N equivalent to C-CH=CH-X (X=CH3, NH2, PH2, SiH3), Chem. Eur. J., 2006, 12, 36, 9254-9261, https://doi.org/10.1002/chem.200600154 . [all data]

Chou, Dahlke, et al., 1993
Chou, P.K.; Dahlke, G.D.; Kass, S.R., Unimolecular Rearrangements of Carbanions in the Gas Phase .2. Cyclopropyl Anions, J. Chem. Soc. Chem. Comm., 1993, 115, 1, 315, https://doi.org/10.1021/ja00054a045 . [all data]

Dahlke and Kass, 1991
Dahlke, G.D.; Kass, S.R., Substituent Effects in the Gas Phase - 1-Substituted Allyl Anions, J. Am. Chem. Soc., 1991, 113, 15, 5566, https://doi.org/10.1021/ja00015a008 . [all data]

Dawson and Nibbering, 1980
Dawson, J.H.J.; Nibbering, N.M.M., The gas phase anionic chemistry of saturated and unsaturated aliphatic nitriles, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 3. [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Martin and Hepburn, 1998
Martin, J.D.D.; Hepburn, J.W., Determination of bond dissociation energies by threshold ion-pair production spectroscopy: An improved D-0(HCl), J. Chem. Phys., 1998, 109, 19, 8139-8142, https://doi.org/10.1063/1.477476 . [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Stoneman and Larson, 1986
Stoneman, R.C.; Larson, D.J., Photodetachment spectroscopy of SeH- in a magnetic field, J. Phys. B:, 1986, 19, 405. [all data]

Dixon, Holtz, et al., 1972
Dixon, D.A.; Holtz, D.; Beauchamp, J.L., Acidity, basicity, and gas-phase ion chemistry of hydrogen selenide by ion cyclotron resonance spectroscopy, Inorg. Chem., 1972, 11, 960. [all data]

Villano, Eyet, et al., 2010
Villano, S.M.; Eyet, N.; Wren, S.W.; Ellison, G.B.; Bierbaum, V.M.; Lineberger, W.C., Photoelectron Spectroscopy and Thermochemistry of the Peroxyformate Anion, J. Phys. Chem. A, 2010, 114, 1, 191-200, https://doi.org/10.1021/jp907569w . [all data]

Bowie, DePuy, et al., 1986
Bowie, J.H.; DePuy, C.H.; Sullivan, S.A.; Berbaum, V.M., Gas phase reactions of the hydroperoxide and peroxyformate anions, Can. J. Chem., 1986, 64, 1046. [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Strohmeier and Höhne, 1952
Strohmeier, W.; Höhne, I., Keto-Enol-Umwandlung des Acetylacteons in Gaszustand, Z. Naturfor., 1952, 7B, 184. [all data]

Folkendt, Weiss-Lopez, et al., 1989
Folkendt, M.M.; Weiss-Lopez, B.E.; Chauvel, J.P., Jr.; True, N.S., Gas-Phase 1H NMR Studies of Keto-Enol Tautomerization of Acetylacetone, Methyl Acetoacetate, and Ethyl Acetoacetate, J. Phys. Chem., 1989, 89, 15, 3347, https://doi.org/10.1021/j100261a038 . [all data]

Irikura, 1999
Irikura, K.K., Acetylacetonate (acac) anion in the gas phase: predicted structures, vibrational spectra, and photodetachment energies, Int. J. Mass Spectrom., 1999, 187, 577-587, https://doi.org/10.1016/S1387-3806(98)14192-1 . [all data]

Zimmerman and Brauman, 1977
Zimmerman, A.H.; Brauman, J.I., Electron photodetachment from negative ions of C2v symmetry. Electron affinities of allyl and cyanomethyl radicals, J. Am. Chem. Soc., 1977, 99, 3565. [all data]

Heni and Illenberger, 1986
Heni, M.; Illenberger, E., Electron attachment by saturated nitriles. Acrylonitrile (CH2H3CN), and benzonitrile (C6H5CN), Int. J. Mass Spectrom. Ion Phys., 1986, 73, 127. [all data]

Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M., Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid, J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426 . [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Oakes and Ellison, 1983
Oakes, J.M.; Ellison, B.G., Photoelectron spectroscopy of the allenyl anion CH2=C=CH-, J. Am. Chem. Soc., 1983, 105, 2969. [all data]

Wang and Wang, 1999
Wang, X.B.; Wang, L.S., Vibrationally resolved photoelectron spectroscopy of PO3- and the electronic structure of PO3, Chem. Phys. Lett., 1999, 313, 1-2, 179-183, https://doi.org/10.1016/S0009-2614(99)00993-8 . [all data]

Viggiano, Morris, et al., 1991
Viggiano, A.A.; Morris, R.A.; Dale, F.; Paulson, J.F.; Henshman, M.J.; Miller, T.M.; Miller, S., The Gas Phase Acidities of HPO3 and HPO2: Enthalpies of Deprotonation, J. Phys. Chem., 1991, 95, 3, 1275, https://doi.org/10.1021/j100156a044 . [all data]

Henchman, Viggiano, et al., 1985
Henchman, M.; Viggiano, A.A.; Paulson, J.F.; Freedman, A.; Wormhoudt, J., Thermodynamic and kinetic properties of the metaphosphate anion, PO3-, in the gas phase, J. Am. Chem. Soc., 1985, 107, 1453. [all data]

Born, Ingemann, et al., 2000
Born, M.; Ingemann, S.; Nibbering, N.M.M., Thermochemical properties of halogen-substituted methanes, methyl radicals, and carbenes in the gas phase, Int. J. Mass Spectrom., 2000, 194, 2-3, 103-113, https://doi.org/10.1016/S1387-3806(99)00125-6 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Poutsma, Paulino, et al., 1997
Poutsma, J.C.; Paulino, J.A.; Squires, R.R., Absolute Heats of Formation of CHCl, CHF, and CClF. A Gas-Phase Experimental and G2 Theoretical Study., J. Phys. Chem. A, 1997, 101, 29, 5327, https://doi.org/10.1021/jp970778f . [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]

Bartmess and Griffiths, 1990
Bartmess, J.E.; Griffiths, S.S., Tautomerization Energetics of Benzoannelated Toluenes, J. Am. Chem. Soc., 1990, 112, 8, 2932, https://doi.org/10.1021/ja00164a014 . [all data]

Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A., Ionic Probes of Aromaticity in Annelated Rings, J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001 . [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References