Monopotassium monooxide


Gas phase thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas71.13kJ/molReviewChase, 1998Data last reviewed in December, 1967
Quantity Value Units Method Reference Comment
gas,1 bar238.02J/mol*KReviewChase, 1998Data last reviewed in December, 1967

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 37.31467
B 1.035014
C -0.023270
D 0.001986
E -0.147372
F 59.46259
G 282.0430
H 71.12800
ReferenceChase, 1998
Comment Data last reviewed in December, 1967

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for (39)K16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A 2Π (347) 1 (442) 1        (2.33) 1  
X 2Σ+ 0 1 (384) 2        (2.22) 1  

Notes

1Ab initio calculation by So and Richards, 1975. The relative position of the two states is in accordance with results of a magnetic deflection analysis of M + NO2 scattering products (M = alkali metal) by Herm and Herschbach, 1970.
2Fundamental in solid nitrogen matrix Spiker and Andrews, 1973; the ab initio value is ωe = 467 cm-1 So and Richards, 1975.
3From a merging beam study of the reaction CO+ (K,C) KO+ Rol, Entemann, et al., 1974.

References

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

So and Richards, 1975
So, S.P.; Richards, W.G., The electronic ground states of alkali monoxides, Chem. Phys. Lett., 1975, 32, 227. [all data]

Herm and Herschbach, 1970
Herm, R.R.; Herschbach, D.R., Molecular beam kinetics: reactions of alkali atoms with NO2 and CH3NO2, J. Chem. Phys., 1970, 52, 5783. [all data]

Spiker and Andrews, 1973
Spiker, R.C., Jr.; Andrews, L., Matrix reactions of Na, K, Rb, and Cs atoms with N2O: infrared spectra geometries of K2O, Rb2O, and Cs2O, J. Chem. Phys., 1973, 58, 713. [all data]

Rol, Entemann, et al., 1974
Rol, P.K.; Entemann, E.A.; Wendell, K.L., Merging beams studies of Na, K, and Mg collisions with atmospheric ions, J. Chem. Phys., 1974, 61, 2050. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References