Azelaic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfsolid-1054.3 ± 0.9kJ/molCcbVasil'ev, Borodin, et al., 1991 
Quantity Value Units Method Reference Comment
Δcsolid-4773.9 ± 1.9kJ/molCcbVasil'ev, Borodin, et al., 1991Corresponding Δfsolid = -1054.3 kJ/mol (simple calculation by NIST; no Washburn corrections)
Δcsolid-4775.6kJ/molCcrSunner, 1946Corresponding Δfsolid = -1053. kJ/mol (simple calculation by NIST; no Washburn corrections)
Δcsolid-4773.9 ± 1.9kJ/molCcbVerkade, Hartman, et al., 1926Reanalyzed by Cox and Pilcher, 1970, Original value = -4776.9 kJ/mol; See Verkade, Hartman, et al., 1924; Corresponding Δfsolid = -1054.3 kJ/mol (simple calculation by NIST; no Washburn corrections)

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tfus379.7KN/AKhetarpal, Lal, et al., 1980Uncertainty assigned by TRC = 1. K; TRC
Tfus380.0KN/ACingolani and Berchiesi, 1974Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Δvap119.7 ± 0.8kJ/molCGCRoux, Temprado, et al., 2005Based on data from 434. to 503. K.; AC
Quantity Value Units Method Reference Comment
Δsub159.9 ± 1.0kJ/molMERibeiro da Silva, Monte, et al., 1999Based on data from 367. to 377. K.; AC

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
560.20.133Weast and Grasselli, 1989BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
89.3466.AStephenson and Malanowski, 1987Based on data from 451. to 630. K. See also Stull, 1947.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
451.5 to 629.76.103113396.636-73.11Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
178. ± 5.348. to 373.TPDCappa, Lovejoy, et al., 2007AC
138.294. to 311.TPTDChattopadhyay and Ziemann, 2005Values based on TPTD method are not consistent with values determined by other experimental methods; AC
156.2 ± 0.5372.MERibeiro da Silva, Monte, et al., 1999Based on data from 367. to 377. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
32.677380.0N/ACingolani and Berchiesi, 1974DH
35.3375.6DSCChen, Xia, et al., 2009Authors explicitly state in the manuscript that no solid-solid phase transition was observed; AC
29.7372.4DSCRoux, Temprado, et al., 2005AC
32.67380.N/AAcree, 1991AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
85.98380.0Cingolani and Berchiesi, 1974DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C9H15O4- + Hydrogen cation = Azelaic acid

By formula: C9H15O4- + H+ = C9H16O4

Quantity Value Units Method Reference Comment
Δr1354. ± 8.4kJ/molCIDCKumar, Prabhakar, et al., 2005gas phase
Quantity Value Units Method Reference Comment
Δr1349. ± 8.4kJ/molCIDCKumar, Prabhakar, et al., 2005gas phase

Gas Chromatography

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5MS1672.2Andriamaharavo, 201430. m/0.25 mm/0.25 μm, He; Program: 60C (1 min) => 5 C/min => 210C => 10 C/min => 280C (15 min)

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Vasil'ev, Borodin, et al., 1991
Vasil'ev, V.P.; Borodin, V.A.; Kopnyshev, S.B., Calculation of the standard enthalpies of combustion and of formation of crystalline organic acids and complexones from the energy contributions of atomic groups, Russ. J. Phys. Chem. (Engl. Transl.), 1991, 65, 29-32. [all data]

Sunner, 1946
Sunner, S., Determination of combustion heats of organo-sulphur compounds, Svensk. Kim. Tidr., 1946, 58, 71-81. [all data]

Verkade, Hartman, et al., 1926
Verkade, P.E.; Hartman, H.; Coops, J., Calorimetric researches. X. Heats of combustion of successive terms of homologous series: dicarboxylic acids of the oxalic acid series, Rec. Trav. Chim. Pays/Bas, 1926, 45, 373-393. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Verkade, Hartman, et al., 1924
Verkade, P.E.; Hartman, H.; Coops, J., Jr., Chemistry - The molecular heat of combustion of successive terms of homologous series, Kom. Med. Akad. Ueknschap. Proc., 1924, 27, 859-866. [all data]

Khetarpal, Lal, et al., 1980
Khetarpal, S.C.; Lal, K.; Bhatnagar, H.I., Indian J. Chem., Sect. A:Inorg., Phys., Theor. Anal., 1980, 19A, 516. [all data]

Cingolani and Berchiesi, 1974
Cingolani, A.; Berchiesi, G., Thermodynamic properties of organic compounds. 1. A DSC study of phase transitions in aliphatic dicarboxylic acids, J. Therm. Anal., 1974, 6, 87-90. [all data]

Roux, Temprado, et al., 2005
Roux, Maria Victoria; Temprado, Manuel; Chickos, James S., Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16, The Journal of Chemical Thermodynamics, 2005, 37, 9, 941-953, https://doi.org/10.1016/j.jct.2004.12.011 . [all data]

Ribeiro da Silva, Monte, et al., 1999
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Ribeiro, José R., Vapour pressures and the enthalpies and entropies of sublimation of five dicarboxylic acids, The Journal of Chemical Thermodynamics, 1999, 31, 8, 1093-1107, https://doi.org/10.1006/jcht.1999.0522 . [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Cappa, Lovejoy, et al., 2007
Cappa, Christopher D.; Lovejoy, Edward R.; Ravishankara, A.R., Determination of Evaporation Rates and Vapor Pressures of Very Low Volatility Compounds: A Study of the C 4 -C 10 and C 12 Dicarboxylic Acids, J. Phys. Chem. A, 2007, 111, 16, 3099-3109, https://doi.org/10.1021/jp068686q . [all data]

Chattopadhyay and Ziemann, 2005
Chattopadhyay, Sulekha; Ziemann, Paul J., Vapor Pressures of Substituted and Unsubstituted Monocarboxylic and Dicarboxylic Acids Measured Using an Improved Thermal Desorption Particle Beam Mass Spectrometry Method, Aerosol Science and Technology, 2005, 39, 11, 1085-1100, https://doi.org/10.1080/02786820500421547 . [all data]

Chen, Xia, et al., 2009
Chen, Su-ning; Xia, Qing; Li, Dong; Yuan, Wei-Guang; Zhang, Feng-Bao; Zhang, Guo-Liang, Solid-Liquid Equilibria of Nonanedioic Acid in Binary Ethanol + Water Solvent Mixtures from (292.35 to 345.52) K, J. Chem. Eng. Data, 2009, 54, 4, 1395-1399, https://doi.org/10.1021/je800921n . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Kumar, Prabhakar, et al., 2005
Kumar, M.R.; Prabhakar, S.; Nagaveni, V.; Vairamani, M., Estimation of gas-phase acidities of a series of dicarboxylic acids by the kinetic method, Rapid Commun. Mass Spectrom., 2005, 19, 8, 1053-1057, https://doi.org/10.1002/rcm.1888 . [all data]

Andriamaharavo, 2014
Andriamaharavo, N.R., Retention Data. NIST Mass Spectrometry Data Center., NIST Mass Spectrometry Data Center, 2014. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, References