Phenol, 4-amino-
- Formula: C6H7NO
- Molecular weight: 109.1259
- IUPAC Standard InChIKey: PLIKAWJENQZMHA-UHFFFAOYSA-N
- CAS Registry Number: 123-30-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Phenol, p-amino-; p-Aminophenol; p-Hydroxyaniline; p-Hydroxyphenylamine; Activol; Azol; Benzofur P; BASF Ursol P Base; C.I. Oxidation Base 6; C.I. 76550; Certinal; Citol; Durafur Brown RB; Fouramine P; Fourrine P Base; Fourrine 84; Furro P base; Nako Brown R; Paranol; Pelagol Grey P Base; Pelagol P Base; Renal AC; Rodinal; Tertral P Base; Unal; Ursol P; Ursol P Base; Zoba Brown P Base; 1-Amino-4-hydroxybenzene; 4-Amino-1-hydroxybenzene; 4-Aminophenol; 4-Hydroxyaniline; p-Aminofenol; C.I. Oxidation Base 6A; PAP; UN 2512; 4-Aminobenzenol; Kodelon; Para-aminophenol; Paramidophenol; Takatol; NSC 1545; Furro P (Salt/Mix); Futramine P (Salt/Mix); Pelagol CP (Salt/Mix); Pelagol Grey CP (Salt/Mix); Peltol P (Salt/Mix); Durafur Brown R (Salt/Mix)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -90.5 ± 1.2 | kJ/mol | Ccr | Sabbah and Gouali, 1996 | Author was aware that data differs from previously reported values |
ΔfH°gas | -81.5 ± 1.7 | kJ/mol | Ccb | Nunez, Barral, et al., 1986 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | -194.1 | kJ/mol | Ccr | Sabbah and Gouali, 1996 | Author was aware that data differs from previously reported values |
ΔfH°solid | -190.6 ± 0.9 | kJ/mol | Ccb | Nunez, Barral, et al., 1986 | |
ΔfH°solid | -168. | kJ/mol | Ccb | Lemoult, 1906 | Author value for hf298-condensed=-44 kcal/mol |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -3167.4 ± 0.9 | kJ/mol | Ccr | Sabbah and Gouali, 1996 | Author was aware that data differs from previously reported values |
ΔcH°solid | -3170.9 ± 0.5 | kJ/mol | Ccb | Nunez, Barral, et al., 1986 | |
ΔcH°solid | -3194. | kJ/mol | Ccb | Lemoult, 1906 | Author value for hf298-condensed=-44 kcal/mol |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 459.5 | K | N/A | Bret-Dibat and Lichanot, 1989 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 457. | K | N/A | Kemula, Buchowski, et al., 1968 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 465. | K | N/A | Dunn, 1954 | Uncertainty assigned by TRC = 2. K; TRC |
Tfus | 462.5 | K | N/A | Dunn, 1954 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 463.4 | K | N/A | Dunn, 1954 | Uncertainty assigned by TRC = 1. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 103.63 ± 0.65 | kJ/mol | C | Sabbah and Gouali, 1996 | Author was aware that data differs from previously reported values; ALS |
ΔsubH° | 103.6 ± 0.7 | kJ/mol | C | Sabbah and Gouali, 1996 | AC |
ΔsubH° | 109.1 ± 1.4 | kJ/mol | C | Nunez, Barral, et al., 1986 | ALS |
ΔsubH° | 109.1 ± 1.4 | kJ/mol | C | Nunez, Barral, et al., 1986 | AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
403.3 to 458.5 | -0.1507 | 136.675 | -361.969 | Dunn, 1954, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
101.1 ± 0.7 | 335. | C | Sabbah and Gouali, 1996 | AC |
111.0 | 438. | N/A | Stephenson and Malanowski, 1987 | Based on data from 423. to 459. K.; AC |
92.1 | 417. | I | Dunn, 1954, 2 | Based on data from 403. to 430. K. See also Jones, 1960.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
23.8 | 455.2 | Rotich, Glass, et al., 2001 | AC |
31.2 | 459.5 | Domalski and Hearing, 1996 | See also Bret-Dibat and Lichanot, 1989, 2.; AC |
26.0 | 462.5 | Domalski and Hearing, 1996 | See also Sabbah and Gouali, 1996.; AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Br- + C6H7NO = (Br- • C6H7NO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 81.6 ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 41. ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
41. | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; Entropy change calculated or estimated; M |
C6H6NO- + =
By formula: C6H6NO- + H+ = C6H7NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1475. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 1483. ± 9.6 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1446. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1454. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase; B |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
View reactions leading to C6H7NO+ (ion structure unspecified)
De-protonation reactions
C6H6NO- + =
By formula: C6H6NO- + H+ = C6H7NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1475. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrH° | 1483. ± 9.6 | kJ/mol | G+TS | Kebarle and McMahon, 1977 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1446. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1454. ± 8.4 | kJ/mol | IMRE | Kebarle and McMahon, 1977 | gas phase |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-1627 |
NIST MS number | 228504 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | SE-30 | 1314. | Grzybowski, Lamparczyk, et al., 1980 | Chromosorb W HMDS (80-100 mesh); Column length: 2.9 m; Program: not specified |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | SE-30 | 1265. | Peng, Ding, et al., 1988 | He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m |
Packed | SE-30 | 1265. | Peng, Ding, et al., 1988 | He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SE-30 | 1314. | Peterson, 1992 | Program: not specified |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 1314. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Other | Methyl Silicone | 1265. | Ardrey and Moffat, 1981 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Sabbah and Gouali, 1996
Sabbah, R.; Gouali, M.,
Energetique des liaisons inter et intramoleculaires dans les trois isomeres de l'aminophenol,
Can. J. Chem., 1996, 74, 500-507. [all data]
Nunez, Barral, et al., 1986
Nunez, L.; Barral, L.; Largo, S.G.; Pilcher, G.,
Enthalpies of combustion of the three aminophenols,
J. Chem. Thermodyn., 1986, 18, 575-579. [all data]
Lemoult, 1906
Lemoult, M.P.,
Thermochimie. - Chaleur de combustion et de formation de quelques composes cycliques azotes,
Compt. Rend., 1906, 143, 772-775. [all data]
Bret-Dibat and Lichanot, 1989
Bret-Dibat, P.; Lichanot, A.,
Proprietes thermodynamiques des isomeres de position de benzenes disubstitues en phase condensee,
Thermochim. Acta, 1989, 147, 2, 261, https://doi.org/10.1016/0040-6031(89)85181-0
. [all data]
Kemula, Buchowski, et al., 1968
Kemula, W.; Buchowski, H.; Pawlowski, W.,
Effect of the position of substituents in an aromatic ring on R(f) and partition coefficients: II. aromatic amines,
Rocz. Chem., 1968, 42, 1951. [all data]
Dunn, 1954
Dunn, S.A.,
Some physical properties of p-aminophenol,
J. Am. Chem. Soc., 1954, 76, 6191. [all data]
Dunn, 1954, 2
Dunn, S.A.,
Some Physical Properties of p-Aminophenol,
J. Am. Chem. Soc., 1954, 76, 23, 6191-6192, https://doi.org/10.1021/ja01652a096
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Rotich, Glass, et al., 2001
Rotich, M.K.; Glass, B.D.; Brown, M.E.,
Journal of Thermal Analysis and Calorimetry, 2001, 64, 2, 681-688, https://doi.org/10.1023/A:1011584125859
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Bret-Dibat and Lichanot, 1989, 2
Bret-Dibat, P.; Lichanot, A.,
Thermodynamic properties of positional isomers of disubstituted benzene in condensed phase,
Thermochim. Acta, 1989, 147(2), 261-271. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Stabilities in the Gas Phase of the Hydrogen Bonded Complexes, YC6H4OH-X-, of Substituted Phenols, YC6H4OH, with the Halide Anions X-(Cl-, Br-),
Can. J. Chem., 1990, 68, 11, 2070, https://doi.org/10.1139/v90-316
. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B.,
Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria,
J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032
. [all data]
Grzybowski, Lamparczyk, et al., 1980
Grzybowski, J.; Lamparczyk, H.; Nasal, A.; Radecki, A.,
Relationship between the retention indices of phenols on polar and non-polar stationary phases,
J. Chromatogr., 1980, 196, 2, 217-223, https://doi.org/10.1016/S0021-9673(00)80441-0
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Peterson, 1992
Peterson, K.L.,
Counter-Propagation Neural Networks in the Modeling and Prediction of Kovats Indices for Substituted Phenols,
Anal. Chem., 1992, 64, 4, 379-386, https://doi.org/10.1021/ac00028a011
. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Ardrey and Moffat, 1981
Ardrey, R.E.; Moffat, A.C.,
Gas-liquid chromatographic retention indices of 1318 substances of toxicological interest on SE-30 or OV-1 stationary phase,
J. Chromatogr., 1981, 220, 3, 195-252, https://doi.org/10.1016/S0021-9673(00)81925-1
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
T Temperature Tfus Fusion (melting) point ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.