Phenol, 4-amino-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-90.5 ± 1.2kJ/molCcrSabbah and Gouali, 1996Author was aware that data differs from previously reported values
Δfgas-81.5 ± 1.7kJ/molCcbNunez, Barral, et al., 1986 

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Bromine anion + Phenol, 4-amino- = (Bromine anion • Phenol, 4-amino-)

By formula: Br- + C6H7NO = (Br- • C6H7NO)

Quantity Value Units Method Reference Comment
Δr81.6 ± 7.5kJ/molIMREPaul and Kebarle, 1990gas phase; ΔGaff at 423 K; B,M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KN/APaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr41. ± 4.2kJ/molIMREPaul and Kebarle, 1990gas phase; ΔGaff at 423 K; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.423.PHPMSPaul and Kebarle, 1990gas phase; Entropy change calculated or estimated; M

C6H6NO- + Hydrogen cation = Phenol, 4-amino-

By formula: C6H6NO- + H+ = C6H7NO

Quantity Value Units Method Reference Comment
Δr1475. ± 8.8kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr1483. ± 9.6kJ/molG+TSKebarle and McMahon, 1977gas phase; B
Quantity Value Units Method Reference Comment
Δr1446. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr1454. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase; B

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

View reactions leading to C6H7NO+ (ion structure unspecified)

De-protonation reactions

C6H6NO- + Hydrogen cation = Phenol, 4-amino-

By formula: C6H6NO- + H+ = C6H7NO

Quantity Value Units Method Reference Comment
Δr1475. ± 8.8kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1483. ± 9.6kJ/molG+TSKebarle and McMahon, 1977gas phase
Quantity Value Units Method Reference Comment
Δr1446. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale
Δr1454. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Sabbah and Gouali, 1996
Sabbah, R.; Gouali, M., Energetique des liaisons inter et intramoleculaires dans les trois isomeres de l'aminophenol, Can. J. Chem., 1996, 74, 500-507. [all data]

Nunez, Barral, et al., 1986
Nunez, L.; Barral, L.; Largo, S.G.; Pilcher, G., Enthalpies of combustion of the three aminophenols, J. Chem. Thermodyn., 1986, 18, 575-579. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Stabilities in the Gas Phase of the Hydrogen Bonded Complexes, YC6H4OH-X-, of Substituted Phenols, YC6H4OH, with the Halide Anions X-(Cl-, Br-), Can. J. Chem., 1990, 68, 11, 2070, https://doi.org/10.1139/v90-316 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References