Benzaldehyde, 4-hydroxy-
- Formula: C7H6O2
- Molecular weight: 122.1213
- IUPAC Standard InChIKey: RGHHSNMVTDWUBI-UHFFFAOYSA-N
- CAS Registry Number: 123-08-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzaldehyde, p-hydroxy-; p-Formylphenol; p-Hydroxybenzaldehyde; p-Oxybenzaldehyde; 4-Formylphenol; 4-Hydroxybenzaldehyde; Parahydroxybenzaldehyde; USAF M-6; 4-Hydroxybenzenecarbonal; NSC 2127
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔsubH° | 102.5 ± 0.5 | kJ/mol | ME | Ribeiro da Silva, Gonçalves, et al., 2010 | Based on data from 324. to 341. K.; AC |
ΔsubH° | 99.7 ± 0.4 | kJ/mol | C | Bernardes and Minas da Piedade, 2008 | AC |
ΔsubH° | 98.2 ± 1.3 | kJ/mol | N/A | Stephenson and Malanowski, 1987 | Based on data from 303. to 336. K. See also Parsons, Rochester, et al., 1971.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
72.3 | 409. | A | Stephenson and Malanowski, 1987 | Based on data from 394. to 583. K. See also Stull, 1947.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
394.3 to 583. | 5.32116 | 2851.945 | -46.329 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
101.8 ± 0.5 | 333. | ME | Ribeiro da Silva, Gonçalves, et al., 2010 | Based on data from 324. to 341. K.; AC |
91.2 | 324. | N/A | Aihara, 1960 | Based on data from 312. to 336. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
20.3 | 390.8 | DSC | Bernardes and Minas da Piedade, 2008 | AC |
21.6 | 390.8 | N/A | Temprado, Roux, et al., 2008 | AC |
Reaction thermochemistry data
Go To: Top, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Br- + C7H6O2 = (Br- • C7H6O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 108. ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B,M,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; switching reaction,Thermochemical ladder(Br-)C6H5OH, Entropy change calculated or estimated; M |
ΔrS° | 96. | J/mol*K | N/A | Paul and Kebarle, 1990 | gas phase; switching reaction,Thermochemical ladder(Br-)C6H5OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 67.4 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1990 | gas phase; ΔGaff at 423 K; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
64.4 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; switching reaction,Thermochemical ladder(Br-)C6H5OH, Entropy change calculated or estimated; M |
67.4 | 423. | PHPMS | Paul and Kebarle, 1990 | gas phase; switching reaction,Thermochemical ladder(Br-)C6H5OH, Entropy change calculated or estimated; M |
C7H5O2- + =
By formula: C7H5O2- + H+ = C7H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1393. ± 8.8 | kJ/mol | G+TS | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1364. ± 8.4 | kJ/mol | IMRE | Fujio, McIver, et al., 1981 | gas phase; value altered from reference due to change in acidity scale; B |
References
Go To: Top, Phase change data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Ribeiro da Silva, Gonçalves, et al., 2010
Ribeiro da Silva, Maria D.M.C.; Gonçalves, Mariana V.; Monte, Manuel J.S.,
Thermodynamic study on hydroxybenzaldehyde derivatives: 3- and 4-Hydroxybenzaldehyde isomers and 3,5-di-tert-butyl-2-hydroxybenzaldehyde,
The Journal of Chemical Thermodynamics, 2010, 42, 4, 472-477, https://doi.org/10.1016/j.jct.2009.10.009
. [all data]
Bernardes and Minas da Piedade, 2008
Bernardes, Carlos E.S.; Minas da Piedade, Manuel E.,
Energetics of the O-H Bond and of Intramolecular Hydrogen Bonding in HOC 6 H 4 C(O)Y (Y = H, CH 3 , CH 2 CH«58875»CH 2 , C«58876»CH, CH 2 F, NH 2 , NHCH 3 , NO 2 , OH, OCH 3 , OCN, CN, F, Cl, SH, and SCH 3 ) Compounds,
J. Phys. Chem. A, 2008, 112, 40, 10029-10039, https://doi.org/10.1021/jp804455u
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Parsons, Rochester, et al., 1971
Parsons, G.H.; Rochester, C.H.; Wood, C.E.C.,
Effect of 4-substitution on the thermodynamics of hydration of phenol and the phenoxide anion,
J. Chem. Soc., B:, 1971, 533, https://doi.org/10.1039/j29710000533
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Aihara, 1960
Aihara, Ariyuki,
Estimation of the Energy of Hydrogen Bonds Formed in Crystals. II. Phenols,
Bull. Chem. Soc. Jpn., 1960, 33, 2, 194-200, https://doi.org/10.1246/bcsj.33.194
. [all data]
Temprado, Roux, et al., 2008
Temprado, M.; Roux, María Victoria; Chickos, J.S.,
Some thermophysical properties of several solid aldehydes,
J Therm Anal Calorim, 2008, 94, 1, 257-262, https://doi.org/10.1007/s10973-007-8883-0
. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Stabilities in the Gas Phase of the Hydrogen Bonded Complexes, YC6H4OH-X-, of Substituted Phenols, YC6H4OH, with the Halide Anions X-(Cl-, Br-),
Can. J. Chem., 1990, 68, 11, 2070, https://doi.org/10.1139/v90-316
. [all data]
Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W.,
Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities,
J. Am. Chem. Soc., 1981, 103, 4017. [all data]
Notes
Go To: Top, Phase change data, Reaction thermochemistry data, References
- Symbols used in this document:
T Temperature ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.