Diphenylamine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C16H34OP2Ru (solution) + Diphenylamine (solution) = C28H43NP2Ru (solution) + Water (solution)

By formula: C16H34OP2Ru (solution) + C12H11N (solution) = C28H43NP2Ru (solution) + H2O (solution)

Quantity Value Units Method Reference Comment
Δr1.2 ± 0.1kcal/molEqSBryndza, Fong, et al., 1987solvent: Tetrahydrofuran; In a series of reactions involving similar ruthenium complexes, the reaction enthalpy was identified with the reaction Gibbs energy, since the entropy values are expected to be small Bryndza, Fong, et al., 1987. For this reaction, however a van't Hoff plot could be used. Temperature range: 293-328 K; MS
Δr4.71kcal/molEqSBryndza, Fong, et al., 1987solvent: Benzene; The reaction enthalpy was identified with the reaction Gibbs energy, since the the entropy is expected to be small Bryndza, Fong, et al., 1987; MS

C12H10N- + Hydrogen cation = Diphenylamine

By formula: C12H10N- + H+ = C12H11N

Quantity Value Units Method Reference Comment
Δr350.8 ± 2.1kcal/molG+TSTaft and Bordwell, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr343.8 ± 2.0kcal/molIMRETaft and Bordwell, 1988gas phase; B

Diphenylamine (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + Pentane (solution)

By formula: C12H11N (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-28.39kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Diphenylamine = C12H11N

By formula: C12H11N = C12H11N

Quantity Value Units Method Reference Comment
Δr62.1 ± 4.8kcal/molCmSuzuki, Kajii, et al., 1992solid phase; solvent: Methanol; ALS

Diphenylamine + Nitrous acid = Water + N-Nitrosodiphenylamine

By formula: C12H11N + HNO2 = H2O + C12H10N2O

Quantity Value Units Method Reference Comment
Δr-15.02kcal/molCmSwientoslawski, 1910solid phase; ALS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Bryndza, Fong, et al., 1987
Bryndza, H.E.; Fong, L.K.; Paciello, R.A.; Tam, W.; Bercaw, J.E., J. Am. Chem. Soc., 1987, 109, 1444. [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Holm, 1983
Holm, T., Acta Chem. Scand. B, 1983, 37, 797. [all data]

Suzuki, Kajii, et al., 1992
Suzuki, T.; Kajii, Y.; Shibuya, K.; Obi, K., Photocyclization of diphenylamine studied by time-resolved thermal lensing. Heat of reaction, energetics, and reactivity of intermediates, Bull. Chem. Soc. Jpn., 1992, 65, 1084-1088. [all data]

Swientoslawski, 1910
Swientoslawski, W., Thermochemische Untersuchungen der organischen Verbindungen. Dritte Mitteilung. Stickstoffhaltige Verbindungen., Z. Phys. Chem., 1910, 72, 49-83. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References