Selenium dimer
- Formula: Se2
- Molecular weight: 157.92
- IUPAC Standard InChIKey: XIMIGUBYDJDCKI-UHFFFAOYSA-N
- CAS Registry Number: 12185-17-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Constants of diatomic molecules
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through July, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F (1u) | (55421) | [430.2] H | (F ← X2) V | 54932.8 H | ||||||||
↳Barrow, Burton, et al., 1970 | ||||||||||||
E 0u+ | 54752.5 | 403.9 H | 1.3 | 0.0924 | 0.00033 | 2.137 | E ← X2 1 V | 54249 | ||||
↳Barrow, Burton, et al., 1970; Greenwood and Barrow, 1976 | ||||||||||||
E ← X1 V | 54761.7 H | |||||||||||
↳Barrow, Burton, et al., 1970 | ||||||||||||
D (1u) | (53075) | [426.2] H | [0.0965] | [2.091] | D ← X1 2 V | 53096.1 H | ||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
C2 3Σ-0+u | (53324) | [414] H | 3 | C2 ← X1 V | 53339 H | |||||||
↳Barrow, Burton, et al., 1970 | ||||||||||||
C1 3Σ-1u | 53220.5 | 428.0 H | 1.22 | 0.09664 | 0.000333 | 2.0894 | C1 ← X2 V | 52730.9 Z | ||||
↳missing citation | ||||||||||||
B2 3Σ-1u | 26058.6 | 246.42 4 Z | 1.225 | 0.07086 5 6 | 0.000553 | (2E-8) | 2.4400 | B2 ↔ X2 7 8 R | 25478.2 9 | |||
↳Barrow, Chandler, et al., 1966 | ||||||||||||
B2 → X1 R | 25989.2 | |||||||||||
↳Gouedard and Lehmann, 1976; Greenwood and Barrow, 1976 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
B1 3Σ-0u+ | 25980.36 | 246.291 4 10 Z | 1.016 | -0.00549 | 0.07048 11 | 0.000345 | (4E-8) | 2.4466 | B1 → X2 R | 25399.8 | ||
↳Gouedard and Lehmann, 1976; Greenwood and Barrow, 1976 | ||||||||||||
B1 ↔ X1 8 R | 25910.84 Z | |||||||||||
↳missing citation | ||||||||||||
X2 3Σ-1g | 510.0 12 | 387.156 13 Z | 0.9640 13 | 0.09019 13 14 | 0.000299 13 | (2E-8) | 2.1628 | 15 | ||||
X1 3Σ-0g+ | 0 | 385.303 Z | 0.96363 | -0.0008814 | 0.08992 | 0.000288 | -6.1E-7 | 2.4E-8 | -0.023E-8 | 2.1660 |
Notes
1 | This transition is much weaker than E←X1. |
2 | The assumption Barrow, Burton, et al., 1970 that this transition is C1←X1 has been withdrawn Greenwood and Barrow, 1976 since it gives the wrong X1-X2 splitting. |
3 | Diffuse bands |
4 | Vibrational analysis confirmed by isotope investigations Barrow, Chandler, et al., 1966. |
5 | Average value, Be(F3) - Be(F2) = +0.00038. |
6 | Rotational perturbations; a tentative analysis Yee and Barrow, 1972 of these and similar perturbations in the 0u+ component was based on an erroneous value of the 0u+ - 1u splitting. Predissociation in v=5 at J=72(F3) and 73(F2); bands with v'=6 have not been seen. |
7 | Lifetime τ(v=0,J=105) = 58 ns, from Hanle effect measurements Dalby, Vigue, et al., 1975, Gouedard and Lehmann, 1975 combined with experimentally determined Lande gJ factors Gouedard and Lehmann, 1975, Gouedard and Lehmann, 1977. |
8 | Various proposed other "systems" in the region 14500 -18500 cm-1 Rosen and Monfort, 1936, Leelavathi and Rao, 1955 have been shown Barrow, Chandler, et al., 1966 to belong to the main B-X system. Yee and Barrow, 1972 have extended the rotational analysis of the 78Se2 bands to higher values of v". |
9 | Extrapo1ated from bands having v"≥8, using lower state constants of Barrow, Beattie, et al., 1971. |
10 | The B1 0u+ state has a substantial potential maximum arising from an avoided crossing with a repulsive 0u+ state. The interaction strongly affects vibrational levels above v=15; the theoretical discussion by Atabek and Lefebvre, 1972 predicts irregular level shifts and widths above the crossing point. |
11 | Sharp predissociation limits occur for v=4(J=106), v=5(J=82), v=6(J=50), leading to a dissociation limit at 27508 cm-1 above X1 0g+(v=0), and for v=13(J=96), v=14(J=78), v=15(J=50), leading to a dissociation limit at 29498 cm-1. Barrow, Chandler, et al., 1966 attribute the former to 3P2 + 3P1, the latter to 3P1 + 3P1. There are many rotational perturbations and several accidental predissociations; see also 6. |
12 | From Greenwood and Barrow, 1976 whose measurements of fluorescence series in the range 6≤ v"≤12 lead to Δv = +509.95 + 2.1256(v+1/2) for the separation of the rotationless 1g and 0g+ substates. |
13 | Constants apply to 8≤v≤29. |
14 | Average of F2 and F3, Be(F3) - Be(F2) = +0.00006. |
15 | For a theoretical calculation of the magnetic moment of Se2, consistent with experimental results, see Buchler and Meschi, 1975. |
16 | From the predissociation in B1 0u+ (see 11) three possible spectroscopic values for the dissociation energy of 80Se2, i.e. D00 = 3.4105, 3.1638, 3.0964 eV, can be derived depending on the assumed atomic states at the observed predissociation limits. Barrow, Chandler, et al., 1966 prefer D00 = 3.164 eV on the basis of indirect spectroscopic arguments. However, both photoionization Berkowitz and Chupka, 1969, Radler and Berkowitz, 1977 and thermochemical studies [mass-spectrometry Berkowitz and Chupka, 1966, Colin and Drowart, 1968, Uy and Drowart, 1969, Knudsen-torsion effusion Budininkas, Edwards, et al., 1968; see also Meschi and Searcy, 1969, Smoes, Mandy, et al., 1972] strongly favor the higher value D00 = 3.411 eV. |
17 | Photoionization mass-spectrometry Berkowitz and Chupka, 1969. From the photoelectron spectrum Streets and Berkowitz, 1976 derive adiabatic and vertical ionization potentials of 8.70 and 8.89 eV, respectively. |
References
Go To: Top, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Barrow, Burton, et al., 1970
Barrow, R.F.; Burton, W.G.; Callomon, J.H.,
Absorption spectrum of gaseous 80Se2 in the region 51500-55000 cm-1,
J. Chem. Soc. Faraday Trans., 1970, 66, 2685. [all data]
Greenwood and Barrow, 1976
Greenwood, D.J.; Barrow, R.F.,
A medium-resolution study of fluorescence in 80Se2 excited by lines of the argon-ion laser,
J. Phys. B:, 1976, 9, 2123. [all data]
Barrow, Chandler, et al., 1966
Barrow, R.F.; Chandler, G.G.; Meyer, C.B.,
The B(3Σu-) - X(3Σg-) band system of the Se2 molecule,
Philos. Trans. R. Soc. London A, 1966, 260, 395. [all data]
Gouedard and Lehmann, 1976
Gouedard, G.; Lehmann, J.C.,
Fine-structure determinations in the X3Σg- and B3Σu- states of 80Se2,
J. Phys. B:, 1976, 9, 2113. [all data]
Yee and Barrow, 1972
Yee, K.K.; Barrow, R.F.,
Absorption and fluorescence spectra of gaseous Se2,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1181. [all data]
Dalby, Vigue, et al., 1975
Dalby, F.W.; Vigue, J.; Lehmann, J.C.,
On Hanle effects in the B(3Σu-)-X(3Σg-) band system of the Se2 molecule,
Can. J. Phys., 1975, 53, 140. [all data]
Gouedard and Lehmann, 1975
Gouedard, G.; Lehmann, J.-C.,
Effet hanle et resonances en lumiere modulee sur le niveau B1u,v'=O, J'=105 de la molecule (80Se)2 excitee par la raie 4 727 Å d'un laser a argon ionise,
C.R. Acad. Sci. Paris, Ser. B, 1975, 280, 471. [all data]
Gouedard and Lehmann, 1977
Gouedard, G.; Lehmann, J.C.,
Lande factors measurements in the B3Σu- state of 80Se2,
J. Phys. Lett., 1977, 38, 85. [all data]
Rosen and Monfort, 1936
Rosen, B.; Monfort, F.,
Etude du spectre du selenium dans le rouge et l'infrarouge photographique,
Physica (The Hague), 1936, 3, 257. [all data]
Leelavathi and Rao, 1955
Leelavathi, V.; Rao, P.T.,
The visible emission spectrum of Se2,
Indian J. Phys., 1955, 29, 1. [all data]
Barrow, Beattie, et al., 1971
Barrow, R.F.; Beattie, I.R.; Burton, W.G.; Gilson, T.,
Resonance fluorescence spectra of 80Se2,
Trans. Faraday Soc., 1971, 67, 583. [all data]
Atabek and Lefebvre, 1972
Atabek, O.; Lefebvre, R.,
Evaluation of the level shifts produced on the discrete levels of the BOu+ state of the Se2 molecule by the interaction with a repulsive state,
Chem. Phys. Lett., 1972, 17, 167. [all data]
Buchler and Meschi, 1975
Buchler, A.; Meschi, D.J.,
The magnetic moment of Se2,
J. Chem. Phys., 1975, 63, 3586. [all data]
Berkowitz and Chupka, 1969
Berkowitz, J.; Chupka, W.A.,
Photoionization of high-temperature vapors. VI. S2, Se2, and Te2,
J. Chem. Phys., 1969, 50, 4245. [all data]
Radler and Berkowitz, 1977
Radler, K.; Berkowitz, J.,
Photoionization mass spectrometric study of CSe2,
J. Chem. Phys., 1977, 66, 2176. [all data]
Berkowitz and Chupka, 1966
Berkowitz, J.; Chupka, W.A.,
Equilibrium composition of selenium vapor; the thermodynamics of the vaporization of HgSe, CdSe, and SrSe,
J. Chem. Phys., 1966, 45, 4289. [all data]
Colin and Drowart, 1968
Colin, R.; Drowart, J.,
Mass spectrometric determination of dissociation energies of gaseous indium sulphides, selenides and tellurides,
J. Chem. Soc. Faraday Trans., 1968, 64, 2611. [all data]
Uy and Drowart, 1969
Uy, O.M.; Drowart, J.,
Mass spectrometric determination of the dissociation energies of the molecules BiO, BiS, BiSe and BiTe,
J. Chem. Soc. Faraday Trans., 1969, 65, 3221. [all data]
Budininkas, Edwards, et al., 1968
Budininkas, P.; Edwards, R.K.; Wahlbeck, P.G.,
Dissociation energies of group VIa gaseous homonuclear diatomic molecules. II. Selenium,
J. Chem. Phys., 1968, 48, 2867. [all data]
Meschi and Searcy, 1969
Meschi, D.J.; Searcy, A.W.,
Investigation of the magnetic moments of S2, Se2, Te2, Se6, and Se5 by the Stern-Gerlach magnetic deflection method,
J. Chem. Phys., 1969, 51, 5134. [all data]
Smoes, Mandy, et al., 1972
Smoes, S.; Mandy, F.; Vander Auwera-Mahieu, A.; Drowart, J.,
Determination by the mass spectrometric Knudsen cell method of the dissociation energies of the group IB chalcogenides,
Bull. Soc. Chim. Belg., 1972, 81, 45. [all data]
Streets and Berkowitz, 1976
Streets, D.G.; Berkowitz, J.,
Photoelectron spectroscopy of Se2 and Te2,
J. Electron Spectrosc. Relat. Phenom., 1976, 9, 269. [all data]
Notes
Go To: Top, Constants of diatomic molecules, References
- Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.