Carbon disulfide anion


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Quantity Value Units Method Reference Comment
Δfgas22.1 ± 2.3kcal/molR-EAChowdhury, Heinis, et al., 1986ΔGea(423 K) = -12.7 kcal/mol; ΔSea (estimated) = +2.0 eu.

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

CS2- + Carbon disulfide = (CS2- • Carbon disulfide)

By formula: CS2- + CS2 = (CS2- • CS2)

Quantity Value Units Method Reference Comment
Δr21.9 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Δr4.4 ± 1.1kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr4.10 ± 0.60kcal/molLPESBowen and Eaton, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr13.0 ± 2.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

(CS2- • Carbon disulfide) + Carbon disulfide = (CS2- • 2Carbon disulfide)

By formula: (CS2- • CS2) + CS2 = (CS2- • 2CS2)

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.70kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr6.4 ± 1.4kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr0.1 ± 3.3kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

(CS2- • 3Carbon disulfide) + Carbon disulfide = (CS2- • 4Carbon disulfide)

By formula: (CS2- • 3CS2) + CS2 = (CS2- • 4CS2)

Quantity Value Units Method Reference Comment
Δr2.3 ± 6.7kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 4Carbon disulfide) + Carbon disulfide = (CS2- • 5Carbon disulfide)

By formula: (CS2- • 4CS2) + CS2 = (CS2- • 5CS2)

Quantity Value Units Method Reference Comment
Δr1.8 ± 6.6kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 2Carbon disulfide) + Carbon disulfide = (CS2- • 3Carbon disulfide)

By formula: (CS2- • 2CS2) + CS2 = (CS2- • 3CS2)

Quantity Value Units Method Reference Comment
Δr-23.40kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CS2- + Carbon disulfide = (CS2- • Carbon disulfide)

By formula: CS2- + CS2 = (CS2- • CS2)

Quantity Value Units Method Reference Comment
Δr21.9 ± 1.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Δr4.4 ± 1.1kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr4.10 ± 0.60kcal/molLPESBowen and Eaton, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr13.0 ± 2.5kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

(CS2- • Carbon disulfide) + Carbon disulfide = (CS2- • 2Carbon disulfide)

By formula: (CS2- • CS2) + CS2 = (CS2- • 2CS2)

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.70kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B
Δr6.4 ± 1.4kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B,M
Quantity Value Units Method Reference Comment
Δr21.cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1994, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr0.1 ± 3.3kcal/molTDAsHiraoka, Fujimaki, et al., 1994gas phase; B

(CS2- • 2Carbon disulfide) + Carbon disulfide = (CS2- • 3Carbon disulfide)

By formula: (CS2- • 2CS2) + CS2 = (CS2- • 3CS2)

Quantity Value Units Method Reference Comment
Δr-23.40kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 3Carbon disulfide) + Carbon disulfide = (CS2- • 4Carbon disulfide)

By formula: (CS2- • 3CS2) + CS2 = (CS2- • 4CS2)

Quantity Value Units Method Reference Comment
Δr2.3 ± 6.7kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

(CS2- • 4Carbon disulfide) + Carbon disulfide = (CS2- • 5Carbon disulfide)

By formula: (CS2- • 4CS2) + CS2 = (CS2- • 5CS2)

Quantity Value Units Method Reference Comment
Δr1.8 ± 6.6kcal/molN/ATsukuda, Hirose, et al., 1997gas phase; EA given is Vertical Detachment Energy. Affinity is difference from next lower Vertical De; B

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P., Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-, J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037 . [all data]

Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K., Frontier-controlled Structures of the Gas Phas Clusters A+/-(CS2)n, A+/- = S2+, CS2+, S2-, and CS2-, J. Phys. Chem. (1994), 1994, 98, 7, 1802-1809, https://doi.org/10.1021/j100058a014 . [all data]

Tsukuda, Hirose, et al., 1997
Tsukuda, T.; Hirose, T.; Nagata, T., Negative-ion photoelectron spectroscopy of (CS2)(n)(-): coexistence of electronic isomers, Chem. Phys. Lett., 1997, 279, 3-4, 179-184, https://doi.org/10.1016/S0009-2614(97)01021-X . [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]

Hiraoka, Fujimaki, et al., 1994, 2
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Frontier-Controlled Structures of the Gas-Phase A+-(CS2)n Clusters ,A+- = S2+, CS2+, S2-, and CS2-, J. Phys. Chem., 1994, 98, 7, 1802, https://doi.org/10.1021/j100058a014 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, References