Dimethyl ether
- Formula: C2H6O
- Molecular weight: 46.0684
- IUPAC Standard InChIKey: LCGLNKUTAGEVQW-UHFFFAOYSA-N
- CAS Registry Number: 115-10-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Methane, oxybis-; Methyl ether; Methoxymethane; Wood ether; Oxybismethane; (CH3)2O; Ether, dimethyl; Ether, methyl; UN 1033; Dimethyl oxide; Dymel A; Dymel; Demeon D; DME; Methane, 1,1'-oxybis-
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°liquid | 35.031 | cal/mol*K | N/A | Kennedy, Sagenkahn, et al., 1941 |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
24.450 | 240. | Kennedy, Sagenkahn, et al., 1941 | T = 14 to 240 K. |
Phase change data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 248.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 248.3 | K | N/A | Majer and Svoboda, 1985 | |
Tboil | 248.25 | K | N/A | Grosse, 1937 | Uncertainty assigned by TRC = 1. K; TRC |
Tboil | 249.2 | K | N/A | Maass and Boomer, 1922 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tboil | 249.5 | K | N/A | Thiele and Schulte, 1920 | Uncertainty assigned by TRC = 0.6 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 135.2 | K | N/A | Maass and Boomer, 1922 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 131.64 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 131.66 | K | N/A | Kennedy, Sagenkahn, et al., 1941, 2 | Uncertainty assigned by TRC = 0.06 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 401. ± 2. | K | AVG | N/A | Average of 12 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 53. ± 3. | atm | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.164 | l/mol | N/A | Zawisza and Glowka, 1970 | Uncertainty assigned by TRC = 0.003 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 5.351 | mol/l | N/A | Edwards and Maass, 1935 | Uncertainty assigned by TRC = 0.43 mol/l; TRC |
ρc | 4.895 | mol/l | N/A | Tapp, Steacie, et al., 1933 | Uncertainty assigned by TRC = 0.65 mol/l; TRC |
ρc | 5.891 | mol/l | N/A | Cardoso and Coppola, 1923 | Uncertainty assigned by TRC = 0.07 mol/l; extraplation of rectilinear diameter, from obs L and G densities, to Tc = 126.9 deg C, from previous literature; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 4.61 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 4.42 | kcal/mol | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 171. to 248. K.; AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.1410 | 248.34 | N/A | Kennedy, Sagenkahn, et al., 1941 | P = 101.325 kPa; DH |
5.141 | 248.3 | N/A | Majer and Svoboda, 1985 | |
5.40 | 250. | A | Stephenson and Malanowski, 1987 | Based on data from 183. to 265. K.; AC |
5.45 | 234. | A | Stephenson and Malanowski, 1987 | Based on data from 180. to 249. K.; AC |
5.07 | 308. | A | Stephenson and Malanowski, 1987 | Based on data from 293. to 360. K.; AC |
5.04 | 364. | A | Stephenson and Malanowski, 1987 | Based on data from 349. to 400. K.; AC |
5.31 | 256. | A | Stephenson and Malanowski, 1987 | Based on data from 241. to 303. K.; AC |
5.11 | 248. | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 171. to 248. K.; AC |
5.43 | 233. | N/A | Kennedy, Sagenkahn, et al., 1941 | Based on data from 195. to 248. K.; AC |
5.14 ± 0.02 | 248. | C | Kennedy, Sagenkahn, et al., 1941 | AC |
Entropy of vaporization
ΔvapS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
20.70 | 248.34 | Kennedy, Sagenkahn, et al., 1941 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
194.93 to 248.24 | 4.10904 | 894.669 | -30.604 | Kennedy, Sagenkahn, et al., 1941 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.1798 | 131.66 | Kennedy, Sagenkahn, et al., 1941 | DH |
1.18 | 131.7 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.960 | 131.66 | Kennedy, Sagenkahn, et al., 1941 | DH |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Kennedy, Sagenkahn, et al., 1941
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G.,
The heat capacity and entropy, heats of fusion and vaporization, and the vapor pressure of dimethyl ether. The density of gaseous dimethyl ether,
J. Am. Chem. Soc., 1941, 63, 2267-2272. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Grosse, 1937
Grosse, A.V.,
Refractive Indices at Low Temperatures,
J. Am. Chem. Soc., 1937, 59, 2739-41. [all data]
Maass and Boomer, 1922
Maass, O.; Boomer, E.H.,
Vapor Densities at Low Pressures and Over and Extended Temperature Range. I. The Properties of Ethylene Oxide Compared to Oxygen Compounds of Similar Molecular Weight,
J. Am. Chem. Soc., 1922, 44, 8, 1709-1728, https://doi.org/10.1021/ja01429a013
. [all data]
Thiele and Schulte, 1920
Thiele, A.; Schulte, E.,
Binary equilibrium systems with solid carbon dioxide,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1920, 96, 312-42. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Kennedy, Sagenkahn, et al., 1941, 2
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G.,
The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Dimethyl Ether. The Density of Gaseous Dimethyl Ether,
J. Am. Chem. Soc., 1941, 63, 2267-72. [all data]
Zawisza and Glowka, 1970
Zawisza, A.C.; Glowka, S.,
Liquid-vapour equilibria and thermodynamic functions of dimethyl ether - sulphur dioxide system up to 300c and 77.81 atmospheres,
Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1970, 18, 549-54. [all data]
Edwards and Maass, 1935
Edwards, J.; Maass, O.,
Density and Adsorption Studies in the Region of the Critical Temperature: System Dimethyl-ether-alumina.,
Can. J. Res., Sect. A, 1935, 12, 357-71. [all data]
Tapp, Steacie, et al., 1933
Tapp, J.S.; Steacie, E.W.R.; Maass, O.,
Density of a Vapor in Equilibrium with a Liquid Near the Critical Temperature.,
Can. J. Res., 1933, 9, 217-39. [all data]
Cardoso and Coppola, 1923
Cardoso, E.; Coppola, A.A.,
Experimental researches on some thermal properties of gas I the densities of coexisting phases of methyl ether,
J. Chim. Phys. Phys.-Chim. Biol., 1923, 20, 337-46. [all data]
Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers,
The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.