Propene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas20.41kJ/molEqkFuruyama, Golden, et al., 1969ALS
Δfgas20.41kJ/molCmLacher, Walden, et al., 1950Heat of hydrobromination; ALS
Quantity Value Units Method Reference Comment
Δcgas-2057.8 ± 1.1kJ/molCmWiberg and Fenoglio, 1968Corresponding Δfgas = 19.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2057.7 ± 0.6kJ/molCmRossini and Knowlton, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -2057.42 ± 0.62 kJ/mol; Corresponding Δfgas = 19.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.3550.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Crawford B.L., 1939, Kilpatrick J.E., 1946, Kilpatrick J.E., 1947, Chao J., 1975] as well as with ab initio value of S(298.15 K)=266.82 J/mol*K [ East A.L.L., 1997].; GT
39.07100.
44.34150.
50.24200.
60.47273.15
64.32298.15
64.61300.
80.45400.
95.17500.
108.00600.
119.09700.
128.72800.
137.12900.
144.441000.
150.831100.
156.401200.
161.251300.
165.481400.
169.181500.
176.541750.
181.902000.
185.892250.
188.912500.
191.242750.
193.083000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
44.52148.2Bier K., 1974Please also see Kistiakowsky G.B., 1940, Kistiakowsky G.B., 1940, 2, Telfair D., 1942.; GT
45.44157.6
52.22213.1
53.09220.1
53.68223.7
58.45258.0
59.78270.
60.08 ± 0.13272.29
61.45280.
63.43291.1
63.79 ± 0.13298.15
64.73 ± 0.13299.33
64.71300.
67.89320.
67.88 ± 0.14323.15
70.04 ± 0.17333.86
71.03340.
71.78 ± 0.14348.15
74.13360.
74.47 ± 0.15365.15
75.02 ± 0.08367.11
75.79 ± 0.15373.15
79.85 ± 0.16378.15
77.14380.
80.15400.
83.17420.
83.61 ± 0.17423.15
86.09440.
87.44 ± 0.17448.15
89.02460.
91.18 ± 0.18473.15
91.91480.
94.76500.
96.18510.

Ion clustering data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Gold ion (1+) + Propene = (Gold ion (1+) • Propene)

By formula: Au+ + C3H6 = (Au+ • C3H6)

Quantity Value Units Method Reference Comment
Δr>310.kJ/molIMRBSchroeder, Hrusak, et al., 1995RCD

C3H9Si+ + Propene = (C3H9Si+ • Propene)

By formula: C3H9Si+ + C3H6 = (C3H9Si+ • C3H6)

Quantity Value Units Method Reference Comment
Δr128.kJ/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr178.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

Cobalt ion (1+) + Propene = (Cobalt ion (1+) • Propene)

By formula: Co+ + C3H6 = (Co+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
180. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
180. (+6.7,-0.) CIDHaynes and Armentrout, 1994gas phase; guided ion beam CID; M

Iron ion (1+) + Propene = (Iron ion (1+) • Propene)

By formula: Fe+ + C3H6 = (Fe+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
145. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Lithium ion (1+) + Propene = (Lithium ion (1+) • Propene)

By formula: Li+ + C3H6 = (Li+ • C3H6)

Quantity Value Units Method Reference Comment
Δr96.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Rh+ + Propene = (Rh+ • Propene)

By formula: Rh+ + C3H6 = (Rh+ • C3H6)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
118. CIDChen and Armetrout, 1995gas phase; ΔrH>=, guided ion beam CID; M

References

Go To: Top, Gas phase thermochemistry data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Furuyama, Golden, et al., 1969
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2, J. Chem. Thermodyn., 1969, 1, 363-375. [all data]

Lacher, Walden, et al., 1950
Lacher, J.R.; Walden, C.H.; Lea, K.R.; Park, J.D., Vapor phase heats of hydrobromination of cyclopropane and propylene, J. Am. Chem. Soc., 1950, 72, 331-333. [all data]

Wiberg and Fenoglio, 1968
Wiberg, K.B.; Fenoglio, R.A., Heats of formation of C4H6 hydrocarbons, J. Am. Chem. Soc., 1968, 90, 3395-3397. [all data]

Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W., Calorimetric determination of the heats of combustion of ethylene and propylene, J. Res. NBS, 1937, 19, 249-262. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Crawford B.L., 1939
Crawford B.L., Jr., The entropy and heat capacity of propylene, J. Am. Chem. Soc., 1939, 61, 2980-2981. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heat content, free energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1500 K, J. Res. Nat. Bur. Stand, 1946, 37, 163-171. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., Normal coordinate analysis of the vibrational frequencies of ethylene, propylene, cis-2-butene, trans-2-butene, and isobutene, J. Res. Nat. Bur. Stand., 1947, 38, 191-209. [all data]

Chao J., 1975
Chao J., Ideal gas thermodynamic properties of ethylene and propylene, J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Bier K., 1974
Bier K., Thermodynamic properties of propylene from calorimetric measurements, J. Chem. Thermodyn., 1974, 6, 1039-1052. [all data]

Kistiakowsky G.B., 1940
Kistiakowsky G.B., The low temperature gaseous heat capacities of certain C3 hydrocarbons, J. Chem. Phys., 1940, 8, 970-977. [all data]

Kistiakowsky G.B., 1940, 2
Kistiakowsky G.B., Gaseous heat capacities. II, J. Chem. Phys., 1940, 8, 610-618. [all data]

Telfair D., 1942
Telfair D., Supersonic measurement of the heat capacity of propylene, J. Chem. Phys., 1942, 10, 167-171. [all data]

Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H., Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045 . [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Ion clustering data, References