Propene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas4.879kcal/molEqkFuruyama, Golden, et al., 1969ALS
Δfgas4.879kcal/molCmLacher, Walden, et al., 1950Heat of hydrobromination; ALS
Quantity Value Units Method Reference Comment
Δcgas-491.83 ± 0.27kcal/molCmWiberg and Fenoglio, 1968Corresponding Δfgas = 4.73 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-491.8 ± 0.1kcal/molCmRossini and Knowlton, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -491.74 ± 0.15 kcal/mol; Corresponding Δfgas = 4.71 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.21050.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Crawford B.L., 1939, Kilpatrick J.E., 1946, Kilpatrick J.E., 1947, Chao J., 1975] as well as with ab initio value of S(298.15 K)=266.82 J/mol*K [ East A.L.L., 1997].; GT
9.338100.
10.60150.
12.01200.
14.45273.15
15.37298.15
15.44300.
19.23400.
22.75500.
25.813600.
28.463700.
30.765800.
32.772900.
34.5221000.
36.0491100.
37.3801200.
38.5401300.
39.5511400.
40.4351500.
42.1941750.
43.4752000.
44.4292250.
45.1512500.
45.7072750.
46.1473000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
10.64148.2Bier K., 1974Please also see Kistiakowsky G.B., 1940, Kistiakowsky G.B., 1940, 2, Telfair D., 1942.; GT
10.86157.6
12.48213.1
12.69220.1
12.83223.7
13.97258.0
14.29270.
14.36 ± 0.031272.29
14.69280.
15.16291.1
15.25 ± 0.031298.15
15.47 ± 0.031299.33
15.47300.
16.23320.
16.22 ± 0.033323.15
16.74 ± 0.041333.86
16.98340.
17.16 ± 0.033348.15
17.72360.
17.80 ± 0.036365.15
17.93 ± 0.02367.11
18.11 ± 0.036373.15
19.08 ± 0.038378.15
18.44380.
19.16400.
19.88420.
19.98 ± 0.041423.15
20.58440.
20.90 ± 0.041448.15
21.28460.
21.79 ± 0.043473.15
21.97480.
22.65500.
22.99510.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid46.77cal/mol*KN/AChao, Hall, et al., 1983 

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
24.4298.15Chao, Hall, et al., 1983T = 14 to 340 K.
23.6300.Auerbach, Sage, et al., 1950T = 300 to 344 K. Datum at 80°C is Cp at the bubble point, 0.5615 Btu/lb*R.
22.01230.Powell and Giauque, 1939T = 14 to 225 K.
21.5210.3Huffman, Parks, et al., 1931T = 69 to 210 K. Value is unsmoothed experimental datum.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil225.6 ± 0.6KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus88.0KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Tfus87.9KN/AHaselden and Snowden, 1962Uncertainty assigned by TRC = 0.4 K; TRC
Tfus88.25KN/AParks and Huffman, 1931Uncertainty assigned by TRC = 1. K; TRC
Tfus87.95KN/ACoffin and Maass, 1927Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Ttriple87.8 ± 0.8KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ptriple9.38atmN/AAngus, Armstrong, et al., 1980Uncertainty assigned by TRC = 0.15 atm; TRC
Quantity Value Units Method Reference Comment
Tc365.2 ± 0.8KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Pc45.4 ± 0.3atmN/ATsonopoulos and Ambrose, 1996 
Pc45.19atmN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.15 atm; TRC
Pc46.036atmN/AAngus, Armstrong, et al., 1980Uncertainty assigned by TRC = 1.97 atm; TRC
Pc45.61atmN/AMarchman, Prengle, et al., 1949Uncertainty assigned by TRC = 0.1499 atm; TRC
Pc45.3460atmN/ASeibert and Burrell, 1915Uncertainty assigned by TRC = 0.3289 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.1846l/molN/ATsonopoulos and Ambrose, 1996 
Vc0.192l/molN/AMarchman, Prengle, et al., 1949Uncertainty assigned by TRC = 0.005 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc5.42 ± 0.03mol/lN/ATsonopoulos and Ambrose, 1996 
ρc5.549mol/lN/AOhgaki, Umezono, et al., 1990Uncertainty assigned by TRC = 0.07 mol/l; TRC
ρc5.309mol/lN/AAngus, Armstrong, et al., 1980Uncertainty assigned by TRC = 0.36 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap3.834kcal/molN/AMajer and Svoboda, 1985 

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
4.402225.5N/AMajer and Svoboda, 1985 
4.4020225.35N/APowell and Giauque, 1939DH
4.47312.AStephenson and Malanowski, 1987Based on data from 297. to 363. K.; AC
5.31146.AStephenson and Malanowski, 1987Based on data from 104. to 161. K.; AC
4.47256.AStephenson and Malanowski, 1987Based on data from 228. to 271. K.; AC
4.42285.AStephenson and Malanowski, 1987Based on data from 270. to 327. K.; AC
4.49340.AStephenson and Malanowski, 1987Based on data from 325. to 363. K.; AC
4.59227.AStephenson and Malanowski, 1987Based on data from 161. to 242. K. See also Dykyj, 1970.; AC
4.47360.N/AMichels, Wassenaar, et al., 1953Based on data from 298. to 423. K.; AC
4.68211.N/APowell and Giauque, 1939Based on data from 166. to 226. K.; AC
4.61268.N/AMaass and Wright, 1921Based on data from 236. to 283. K. See also Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
19.53225.35Powell and Giauque, 1939DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
165.81 to 225.983.96917795.819-24.884Powell and Giauque, 1939Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.717787.85Chao, Hall, et al., 1983DH
0.717587.85Powell and Giauque, 1939DH
0.701088.2Huffman, Parks, et al., 1931DH
0.70088.2Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
8.16987.85Chao, Hall, et al., 1983DH
8.16987.85Powell and Giauque, 1939DH
7.9688.2Huffman, Parks, et al., 1931DH

Temperature of phase transition

Ttrs (K) Initial Phase Final Phase Reference Comment
56.0crystalineglassTakeda, Oguni, et al., 1990DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Ion clustering data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr391.10 ± 0.30kcal/molG+TSEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr390.5 ± 1.0kcal/molD-EAWenthold, Polak, et al., 1996gas phase; B
Δr390.7 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr390.25 ± 0.65kcal/molG+TSMackay, Lien, et al., 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr383.80 ± 0.10kcal/molIMREEllison, Davico, et al., 1996gas phase; calculated dSacid=24.2±1.0 eu; B
Δr383.9 ± 1.1kcal/molH-TSWenthold, Polak, et al., 1996gas phase; B
Δr384.1 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr383.60 ± 0.50kcal/molIMREMackay, Lien, et al., 1978gas phase; B

Hydrogen bromide + Propene = Propane, 2-bromo-

By formula: HBr + C3H6 = C3H7Br

Quantity Value Units Method Reference Comment
Δr-20.43kcal/molCmLacher, Kianpour, et al., 1957gas phase; ALS
Δr-20.050kcal/molCmLacher, Lea, et al., 1950gas phase; Heat of hydrobromination at 367°K; ALS
Δr-20.10 ± 0.14kcal/molCmLacher, Walden, et al., 1950gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -20.17 ± 0.24 kcal/mol; Heat of hydrobromination; ALS

Propene + Hydrogen = Propane

By formula: C3H6 + H2 = C3H8

Quantity Value Units Method Reference Comment
Δr-29.5 ± 1.2kcal/molChydKistiakowsky and Nickle, 1951gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -29.85 ± 0.50 kcal/mol; ALS
Δr-29.87 ± 0.10kcal/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -30.115 ± 0.013 kcal/mol; At 355 °K; ALS

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr405.8 ± 2.0kcal/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr>404.75 ± 0.60kcal/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr398.0 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr>397.00kcal/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

Hydrogen iodide + 1-Propene, 3-iodo- = Propene + Iodine

By formula: HI + C3H5I = C3H6 + I2

Quantity Value Units Method Reference Comment
Δr-7.96 ± 0.33kcal/molEqkRodgers, Golden, et al., 1966gas phase; ALS
Δr-9.5 ± 1.0kcal/molEqkRodgers, Golden, et al., 1966gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -8.33 ± 0.23 kcal/mol; At 527 K; ALS

Propane, 2-chloro- = Propene + Hydrogen chloride

By formula: C3H7Cl = C3H6 + HCl

Quantity Value Units Method Reference Comment
Δr17.3 ± 0.2kcal/molEqkNoren and Sunner, 1970gas phase; ALS
Δr17.62 ± 0.15kcal/molEqkKabo and Andreevskii, 1963gas phase; At 415.5 K; ALS
Δr17.45 ± 0.50kcal/molEqkHowlett, 1955gas phase; ALS

Cobalt ion (1+) + Propene = (Cobalt ion (1+) • Propene)

By formula: Co+ + C3H6 = (Co+ • C3H6)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
43.0 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
43.1 (+1.6,-0.) CIDHaynes and Armentrout, 1994gas phase; guided ion beam CID; M

C3H9Si+ + Propene = (C3H9Si+ • Propene)

By formula: C3H9Si+ + C3H6 = (C3H9Si+ • C3H6)

Quantity Value Units Method Reference Comment
Δr30.6kcal/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr42.5cal/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

Propene + Bromine = Propane, 1,2-dibromo-

By formula: C3H6 + Br2 = C3H6Br2

Quantity Value Units Method Reference Comment
Δr-29.27 ± 0.20kcal/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -29.41 ± 0.20 kcal/mol; At 355 °K; ALS

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr>404.75 ± 0.90kcal/molG+TSFroelicher, Freiser, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr>397.00kcal/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

Lithium ion (1+) + Propene = (Lithium ion (1+) • Propene)

By formula: Li+ + C3H6 = (Li+ • C3H6)

Quantity Value Units Method Reference Comment
Δr23.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Rh+ + Propene = (Rh+ • Propene)

By formula: Rh+ + C3H6 = (Rh+ • C3H6)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.1 CIDChen and Armetrout, 1995gas phase; ΔrH>=, guided ion beam CID; M

Iron ion (1+) + Propene = (Iron ion (1+) • Propene)

By formula: Fe+ + C3H6 = (Fe+ • C3H6)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
34.7 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(CAS Reg. No. 25012-80-0 • 4294967295Propene) + Propene = CAS Reg. No. 25012-80-0

By formula: (CAS Reg. No. 25012-80-0 • 4294967295C3H6) + C3H6 = CAS Reg. No. 25012-80-0

Quantity Value Units Method Reference Comment
Δr10.8 ± 2.1kcal/molN/ADePuy, Gronert, et al., 1989gas phase; B

(CAS Reg. No. 59513-13-2 • 4294967295Propene) + Propene = CAS Reg. No. 59513-13-2

By formula: (CAS Reg. No. 59513-13-2 • 4294967295C3H6) + C3H6 = CAS Reg. No. 59513-13-2

Quantity Value Units Method Reference Comment
Δr14.6 ± 2.1kcal/molN/ADePuy, Gronert, et al., 1989gas phase; B

Propene + Hydrogen chloride = Propane, 2-chloro-

By formula: C3H6 + HCl = C3H7Cl

Quantity Value Units Method Reference Comment
Δr-17.54kcal/molEqkKabo and Andreevskii, 1963gas phase; At 385°K; ALS

Hydrogen iodide + Propene = Propane, 2-iodo-

By formula: HI + C3H6 = C3H7I

Quantity Value Units Method Reference Comment
Δr-20.62kcal/molEqkFuruyama, Golden, et al., 1969gas phase; ALS

Propene + Sulfuric Acid = isopropyl hydrogen sulphate

By formula: C3H6 + H2O4S = isopropyl hydrogen sulphate

Quantity Value Units Method Reference Comment
Δr-9.2 ± 0.2kcal/molEqkEntelis, Korovina, et al., 1960liquid phase; ALS

1,2-Diiodopropane = Propene + Iodine

By formula: C3H6I2 = C3H6 + I2

Quantity Value Units Method Reference Comment
Δr11.2 ± 0.4kcal/molEqkBenson and Amano, 1962gas phase; ALS

Propane, 2-bromo- = Hydrogen bromide + Propene

By formula: C3H7Br = HBr + C3H6

Quantity Value Units Method Reference Comment
Δr19.3 ± 0.5kcal/molEqkRozhnov and Andreevskii, 1962gas phase; ALS

Propene + 2-Propanone, 1,1,1,3,3,3-hexafluoro- = 4-Penten-2-ol, 1,1,1-trifluoro-2-(trifluoromethyl)-

By formula: C3H6 + C3F6O = C6H6F6O

Quantity Value Units Method Reference Comment
Δr-18.7 ± 1.0kcal/molEqkMoore, 1971gas phase; ALS

Gold ion (1+) + Propene = (Gold ion (1+) • Propene)

By formula: Au+ + C3H6 = (Au+ • C3H6)

Quantity Value Units Method Reference Comment
Δr>75.kcal/molIMRBSchroeder, Hrusak, et al., 1995RCD

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Gold ion (1+) + Propene = (Gold ion (1+) • Propene)

By formula: Au+ + C3H6 = (Au+ • C3H6)

Quantity Value Units Method Reference Comment
Δr>75.kcal/molIMRBSchroeder, Hrusak, et al., 1995RCD

C3H9Si+ + Propene = (C3H9Si+ • Propene)

By formula: C3H9Si+ + C3H6 = (C3H9Si+ • C3H6)

Quantity Value Units Method Reference Comment
Δr30.6kcal/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr42.5cal/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

Cobalt ion (1+) + Propene = (Cobalt ion (1+) • Propene)

By formula: Co+ + C3H6 = (Co+ • C3H6)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
43.0 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
43.1 (+1.6,-0.) CIDHaynes and Armentrout, 1994gas phase; guided ion beam CID; M

Iron ion (1+) + Propene = (Iron ion (1+) • Propene)

By formula: Fe+ + C3H6 = (Fe+ • C3H6)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
34.7 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Lithium ion (1+) + Propene = (Lithium ion (1+) • Propene)

By formula: Li+ + C3H6 = (Li+ • C3H6)

Quantity Value Units Method Reference Comment
Δr23.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Rh+ + Propene = (Rh+ • Propene)

By formula: Rh+ + C3H6 = (Rh+ • C3H6)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.1 CIDChen and Armetrout, 1995gas phase; ΔrH>=, guided ion beam CID; M

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPorapack Q100.292.Ji, Majors, et al., 1999 
CapillaryCP Sil 5 CB20.294.Do and Raulin, 199225. m/0.15 mm/2. μm, H2
CapillaryPoraPLOT Q160.300.Do and Raulin, 198910. m/0.32 mm/10. μm, H2
CapillaryOV-120.289.Nijs and Jacobs, 1981He; Column length: 150. m; Column diameter: 0.50 mm
CapillarySqualane50.283.3Schröder, 1980 
PackedSqualane80.287.Chrétien and Dubois, 1977 
CapillarySqualane40.289.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm
PackedSqualane27.287.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.287.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.288.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.288.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane26.289.Zulaïca and Guiochon, 1966Column length: 10. m

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100283.Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1290.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryChromosorb 101295.Voorhees, Hileman, et al., 197510. K/min; Tstart: 0. C; Tend: 220. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30294.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB286.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH294.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5295.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryUltra-ALLOY-5298.Tsuge, Ohtan, et al., 201130. m/0.25 mm/0.25 μm, 40. C @ 2. min, 20. K/min, 320. C @ 13. min
CapillaryOV-101290.Chupalov and Zenkevich, 1996N2, 3. K/min; Column length: 52. m; Column diameter: 0.26 mm; Tstart: 50. C; Tend: 220. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone288.Chen and Feng, 2007Program: not specified
CapillaryMethyl Silicone290.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillaryMethyl Silicone290.Zenkevich, 2000Program: not specified
CapillarySPB-1283.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes290.Zenkevich, Chupalov, et al., 1996Program: not specified
CapillaryPolydimethyl siloxanes290.Zenkevich and Chupalov, 1996Program: not specified
CapillarySPB-1283.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1310.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
PackedApieson L280.Kojima, Fujii, et al., 1980Chromosorb W; Column length: 20. m; Program: not specified
PackedSE-30290.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Furuyama, Golden, et al., 1969
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2, J. Chem. Thermodyn., 1969, 1, 363-375. [all data]

Lacher, Walden, et al., 1950
Lacher, J.R.; Walden, C.H.; Lea, K.R.; Park, J.D., Vapor phase heats of hydrobromination of cyclopropane and propylene, J. Am. Chem. Soc., 1950, 72, 331-333. [all data]

Wiberg and Fenoglio, 1968
Wiberg, K.B.; Fenoglio, R.A., Heats of formation of C4H6 hydrocarbons, J. Am. Chem. Soc., 1968, 90, 3395-3397. [all data]

Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W., Calorimetric determination of the heats of combustion of ethylene and propylene, J. Res. NBS, 1937, 19, 249-262. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Crawford B.L., 1939
Crawford B.L., Jr., The entropy and heat capacity of propylene, J. Am. Chem. Soc., 1939, 61, 2980-2981. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heat content, free energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1500 K, J. Res. Nat. Bur. Stand, 1946, 37, 163-171. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., Normal coordinate analysis of the vibrational frequencies of ethylene, propylene, cis-2-butene, trans-2-butene, and isobutene, J. Res. Nat. Bur. Stand., 1947, 38, 191-209. [all data]

Chao J., 1975
Chao J., Ideal gas thermodynamic properties of ethylene and propylene, J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Bier K., 1974
Bier K., Thermodynamic properties of propylene from calorimetric measurements, J. Chem. Thermodyn., 1974, 6, 1039-1052. [all data]

Kistiakowsky G.B., 1940
Kistiakowsky G.B., The low temperature gaseous heat capacities of certain C3 hydrocarbons, J. Chem. Phys., 1940, 8, 970-977. [all data]

Kistiakowsky G.B., 1940, 2
Kistiakowsky G.B., Gaseous heat capacities. II, J. Chem. Phys., 1940, 8, 610-618. [all data]

Telfair D., 1942
Telfair D., Supersonic measurement of the heat capacity of propylene, J. Chem. Phys., 1942, 10, 167-171. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point, Ind. Eng. Chem., 1950, 42, 110-113. [all data]

Powell and Giauque, 1939
Powell, T.M.; Giauque, W.F., Propylene. The heat capacity, vapor pressure, heats of fusion and vaporization. The third law of thermodynamics and orientation equilibrium in the solid, J. Am. Chem. Soc., 1939, 61, 2366-2370. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Haselden and Snowden, 1962
Haselden, G.G.; Snowden, P., Equilibrium Properties of the Carbon Dioxide+ Propylene and Carbon Dioxide + Cyclopropane Systems at Low Temperatures, Trans. Faraday Soc., 1962, 58, 1515-28. [all data]

Parks and Huffman, 1931
Parks, G.S.; Huffman, H.M., Some fusion and transition data for hydrocarbons, Ind. Eng. Chem., 1931, 23, 1138-9. [all data]

Coffin and Maass, 1927
Coffin, C.C.; Maass, O., The Prepartion and Physical Properties of Isobutylene, Trans. R. Soc. Can., Sect. 3, 1927, 21, 33. [all data]

Angus, Armstrong, et al., 1980
Angus, S.; Armstrong, B.; de Reuck, K.M., International Thermodynamic Tables of the Fluid State - 7 Propylene(Propene), Pergamon, New York, 1980. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Ohgaki, Umezono, et al., 1990
Ohgaki, K.; Umezono, S.; Katayama, T., Pressure-density-temperature (p-ρ-T) relations of fluoroform, nitrous oxide, and propene in the critical region, J. Supercrit. Fluids, 1990, 3, 78-84. [all data]

Marchman, Prengle, et al., 1949
Marchman, H.; Prengle, H.W.; Motard, R.L., Compressibility and Critical Constants of Propylene Vapor, Ind. Eng. Chem., 1949, 41, 2658. [all data]

Seibert and Burrell, 1915
Seibert, F.M.; Burrell, G.A., The Critical Constants of Normal Butane, Iso-butane and Propylene and Their Vapor Pressures at Temperatures Bewtween 0 deg.C and 120 deg.C, J. Am. Chem. Soc., 1915, 37, 2683-91. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Michels, Wassenaar, et al., 1953
Michels, A.; Wassenaar, T.; Louwerse, P.; Lunbeck, R.J.; Wolkers, G.J., Isotherms and thermodynamical functions of propene at temperatures between 25° and 150°c and at densities up to 340 amagat (pressures up to 2800 atm), Physica, 1953, 19, 1-12, 287-297, https://doi.org/10.1016/S0031-8914(53)80030-3 . [all data]

Maass and Wright, 1921
Maass, O.; Wright, C.H., SOME PHYSICAL PROPERTIES OF HYDROCARBONS CONTAINING TWO AND THREE CARBON ATOMS., J. Am. Chem. Soc., 1921, 43, 5, 1098-1111, https://doi.org/10.1021/ja01438a013 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Takeda, Oguni, et al., 1990
Takeda, K.; Oguni, M.; Suga, H., A DTA apparatus for vapour-deposited samples. Characterisation of some vapour-deposited hydrocarbons, Thermochim. Acta, 1990, 158(1), 195-203. [all data]

Ellison, Davico, et al., 1996
Ellison, G.B.; Davico, G.E.; Bierbaum, V.M.; DePuy, C.H., Thermochemistry of theb Benzyl and Allyl Radicals and Ions, Int. J. Mass Spectrom. Ion Proc., 1996, 156, 1-2, 109-131, https://doi.org/10.1016/S0168-1176(96)04383-2 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Mackay, Lien, et al., 1978
Mackay, G.I.; Lien, M.H.; Hopkinson, A.C.; Bohme, D.K., Experimental and theoretical studies of proton removal from propene, Can. J. Chem., 1978, 56, 131. [all data]

Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Park, J.D., Reaction heats of organic halogen compounds. X. Vapor phase heats of hydrobromination of cyclopropane and propylene, J. Phys. Chem., 1957, 61, 1124-1125. [all data]

Lacher, Lea, et al., 1950
Lacher, J.R.; Lea, K.R.; Walden, C.H.; Olson, G.G.; Park, J.D., Reaction heats of organic fluorine compounds. III. The vapor phase heats of hydrobromination of some simple fluoroolefins, J. Am. Chem. Soc., 1950, 72, 3231-3234. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Rodgers, Golden, et al., 1966
Rodgers, A.S.; Golden, D.M.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + C3H6 = C3H5I + HI, J. Am. Chem. Soc., 1966, 88, 3194-3196. [all data]

Noren and Sunner, 1970
Noren, I.; Sunner, S., The enthalpy of formation of 2-chloropropane from equilibrium studies, J. Chem. Thermodyn., 1970, 2, 597-602. [all data]

Kabo and Andreevskii, 1963
Kabo, G.Ya.; Andreevskii, D.N., Equilibrium of 2-chloropropane dehydrochlorination, Neftekhimiya, 1963, 3, 764-770. [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Entelis, Korovina, et al., 1960
Entelis, S.G.; Korovina, G.V.; Chirkov, N.M., The thermodynamics of propylene absorption by the H2SO4-H20 system, Dokl. Akad. Nauk SSSR, 1960, 134, 856-859. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamics of iodine addition to ethylene, propylene, and cyclopropane, J. Chem. Phys., 1962, 36, 3464-3471. [all data]

Rozhnov and Andreevskii, 1962
Rozhnov, A.M.; Andreevskii, D.N., Equilibrium in the system propene, hydrogen bromide, bromopropane, Dokl. Akad. Nauk SSSR, 1962, 147, 388-391. [all data]

Moore, 1971
Moore, L.O., Kinetics and thermodynamic data for the hydrogen fluoride addition to vinyl fluoride, Can. J. Chem., 1971, 49, 2471-2475. [all data]

Schroeder, Hrusak, et al., 1995
Schroeder, D.; Hrusak, J.; Hertwig, R.H.; Koch, W.; Schwerdtfeger, P.; Schwarz, H., Experimental and Theoretical Studies of Gold(I) Complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 1995, 14, 1, 312, https://doi.org/10.1021/om00001a045 . [all data]

Ji, Majors, et al., 1999
Ji, Z.; Majors, R.E.; Guthrie, E.J., Review. Porous layer open-tubular capillary columns: preparations, applications, and future directions, J. Chromatogr. A, 1999, 842, 1-2, 115-142, https://doi.org/10.1016/S0021-9673(99)00126-0 . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Do and Raulin, 1989
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. I. Analysis of low-molecular-weight hydrocarbons and nitriles with a PoraPLOT Q porous polymer coated open-tubular capillary column, J. Chromatogr., 1989, 481, 45-54, https://doi.org/10.1016/S0021-9673(01)96751-2 . [all data]

Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A., On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor, J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40 . [all data]

Schröder, 1980
Schröder, I.H., Retention Indices of Hydrocarbons up to C14 for the Stationary Phase Squalane, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1980, 3, 1, 38-44, https://doi.org/10.1002/jhrc.1240030115 . [all data]

Chrétien and Dubois, 1977
Chrétien, J.R.; Dubois, J.E., Topological analysis of gas-liquid chromatographic behavior of alkenes, Anal. Chem., 1977, 49, 6, 747-756, https://doi.org/10.1021/ac50014a021 . [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Zulaïca and Guiochon, 1966
Zulaïca, J.; Guiochon, G., Analyse des hauts polymères par chromatographie en phase gazeuse de leurs produits de pyrolyse. II. Application à quelques hydrocarbures macromoléculaires purs, Bull. Soc. Chim. Fr., 1966, 4, 1351-1363. [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Voorhees, Hileman, et al., 1975
Voorhees, K.J.; Hileman, F.D.; Einhorn, I.N., Generation of retention index standards by pyrolysis of hydrocarbons, Anal. Chem., 1975, 47, 14, 2385-2389, https://doi.org/10.1021/ac60364a035 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Tsuge, Ohtan, et al., 2011
Tsuge, S.; Ohtan, H.; Watanabe, C., Pyrolysis - GC/MS Data Book of Synthetic Polymers, Elsevier, 2011, 420. [all data]

Chupalov and Zenkevich, 1996
Chupalov, A.A.; Zenkevich, I.G., Chromatographic Characterization of Structural Transformations of Organic Compounds in Diels-Alder Reaction. Aliphatic Dienes and Dienophyls, Zh. Org. Khim., 1996, 32, 6, 675-684. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, Chupalov, et al., 1996
Zenkevich, I.G.; Chupalov, A.A.; Herzschuh, R., Correlation of the Increments of Gas Chromatographic Retention Indices with the Differences of Innermolecular Energies of Reagents and Products of Chemical Reactions, Zh. Org. Khim. (Rus.), 1996, 32, 11, 1685-1691. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kojima, Fujii, et al., 1980
Kojima, T.; Fujii, T.; Hosaka, Y., Thermal decomposition products of sterepisomeric polypropylenes, Mass Spectrometry, 1980, 28, 4, 335-341. [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Gas Chromatography, References