1-Hexanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-316. ± 10.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
gas439.7 ± 2.1J/mol*KN/AGreen J.H.S., 1961Other third-law value of entropy at 298.15 K is 441.41(4.18) J/mol*K [ Chermin H.A.G., 1961].; GT

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-377.5 ± 0.44kJ/molCcbMosselman and Dekker, 1975ALS
Δfliquid-379.4 ± 1.0kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-383.9 ± 2.0kJ/molCcbGreen, 1960ALS
Δfliquid-387.7kJ/molCmKelley, 1929hfusion=3.68 kcal/mol; ALS
Quantity Value Units Method Reference Comment
Δcliquid-3984.37 ± 0.44kJ/molCcbMosselman and Dekker, 1975Corresponding Δfliquid = -377.50 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3982.6 ± 0.92kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -379.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3978.1 ± 2.0kJ/molCcbGreen, 1960Corresponding Δfliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3978.1kJ/molCcbVerkade and Coops, 1927Corrected for 298 and 1 atm.; Corresponding Δfliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid287.4J/mol*KN/AKelley, 1929, 2DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
243.2298.15Atrashenok, Nesterov, et al., 1991T = 227 to 363 K. Cp(liq) = 2.37095 - 0.0851173(T/100) - 0.195794(T/100)2 - 0.00639224(T/100)3 + 0.0530459(T/100)4 - 0.00859433(T/100)5 kJ/kg*K.; DH
242.5298.15Vesely, Barcal, et al., 1989T = 298.15 to 318.15 K.; DH
241.32298.15Andreoli-Ball, Patterson, et al., 1988DH
237.85298.15Ortega, 1986DH
240.57298.15Tanaka, Toyama, et al., 1986DH
239.68298.15Costas and Patterson, 1985T = 283.15, 298.15, 313.15 K.; DH
239.62298.15Bravo, Pintos, et al., 1984DH
249.15300.607Kalinowska and Woycicki, 1984T = 230 to 300 K. Value is unsmoothed experimental datum.; DH
241.32298.15Zegers and Somsen, 1984DH
240.65298.15Benson, D'Arcy, et al., 1983DH
236.5293.15Arutyunyan, 1981T = 273 to 533 K. p = 0.1 MPa. Unsmoothed experimental datum at 293.15 K, Cp = 2.315 kJ/kg*K.; DH
236.5293.15Arutyunyan, 1981T = 293 to 393 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.315 kJ/kg*K. Cp given from 293.15 to 533.15 K for pressure range 10 to 60 MPa.; DH
247.7303.74Griigo'ev, Yanin, et al., 1979T = 303 to 462 K. p = 0.98 bar.; DH
244.8298.Hutchinson and Bailey, 1959DH
232.46290.01Kelley, 1929, 2T = 16 to 298 K. Value is unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H13O- + Hydrogen cation = 1-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase; B
Δr1565. ± 13.kJ/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.; B
Δr1561. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1537. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase; B
Δr1538. ± 13.kJ/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.; B
Δr1533. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

C3H9Sn+ + 1-Hexanol = (C3H9Sn+ • 1-Hexanol)

By formula: C3H9Sn+ + C6H14O = (C3H9Sn+ • C6H14O)

Quantity Value Units Method Reference Comment
Δr157.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr139.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
83.7525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Green J.H.S., 1961
Green J.H.S., Thermodynamic properties of the normal alcohols C1-C12, J. Appl. Chem., 1961, 11, 397-404. [all data]

Chermin H.A.G., 1961
Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]

Mosselman and Dekker, 1975
Mosselman, C.; Dekker, H., Enthalpies of formation of n-alkan-1-ols, J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Kelley, 1929
Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K. to 298°K. and the corresponding entropies and free energies and free energies, J. Am. Chem. Soc., 1929, 51, 779-781. [all data]

Verkade and Coops, 1927
Verkade, P.E.; Coops, J., Jr., Calorimetric researches XIV. Heats of combustion of successive members of homologous series: the normal primary aliphatic alcohols, Recl. Trav. Chim. Pays-Bas, 1927, 46, 903-917. [all data]

Kelley, 1929, 2
Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 779-786. [all data]

Atrashenok, Nesterov, et al., 1991
Atrashenok, T.R.; Nesterov, N.A.; Zhuk, I.P.; Peshchenko, A.D., Measured specific heats of hexan-1-ol and 3-methyl-2-butanol over wide temperature ranges, Inzh.-Fiz. Zh., 1991, 61(2), 301-304. [all data]

Vesely, Barcal, et al., 1989
Vesely, F.; Barcal, P.; Zabransky, M.; Svoboda, V., Heat capacities of 4-methyl-2-pentanone, 2,6-dimethyl-4-heptanone, 1-hexanol, 1-heptanol, and 1-octanol in the temperature range 298-318 K, Collect. Czech. Chem. Commun., 1989, 54, 602-607. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Ortega, 1986
Ortega, J., Excess molar heat capacities of the binary mixtures of cyclohexane with isomers of hexanol at 298.15 K, Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 307-315. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Bravo, Pintos, et al., 1984
Bravo, R.; Pintos, M.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Excess volumes excess heat capacities of some mixtures: (an isomer of hexanol + an n-alkane) at 298.15 K, J. Chem. Thermodynam., 1984, 16, 73-79. [all data]

Kalinowska and Woycicki, 1984
Kalinowska, B.; Woycicki, W., Heat capacities of liquids in the temperature interval between 90 and 300 K and at atmospheric pressure. III. Heat capacities and excess heat capacities of (n-hexanol-1-ol + n-hexane), J. Chem. Thermodynam., 1984, 16, 609-613. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson, D'Arcy, et al., 1983
Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E., Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K, Thermochim. Acta, 1983, 71, 161-166. [all data]

Arutyunyan, 1981
Arutyunyan, G.S., Experimental investigaiton of the isobaric heat capacity of n-hexyl alcohol at different temperatures and pressures, Izv. Akad. Nauk Azerb., 1981, SSR (2), 97-99. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Hutchinson and Bailey, 1959
Hutchinson, E.; Bailey, L.G., A thermodynamic study of colloidal electrolyte solutions. II. Heat capacities of solubilized systems, experimental, Z. Physik. Chem. [N.G.], 1959, 21, 30-37. [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References