1-Hexanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-316. ± 10.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
gas439.7 ± 2.1J/mol*KN/AGreen J.H.S., 1961Other third-law value of entropy at 298.15 K is 441.41(4.18) J/mol*K [ Chermin H.A.G., 1961].; GT

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-377.5 ± 0.44kJ/molCcbMosselman and Dekker, 1975ALS
Δfliquid-379.4 ± 1.0kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-383.9 ± 2.0kJ/molCcbGreen, 1960ALS
Δfliquid-387.7kJ/molCmKelley, 1929hfusion=3.68 kcal/mol; ALS
Quantity Value Units Method Reference Comment
Δcliquid-3984.37 ± 0.44kJ/molCcbMosselman and Dekker, 1975Corresponding Δfliquid = -377.50 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3982.6 ± 0.92kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -379.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3978.1 ± 2.0kJ/molCcbGreen, 1960Corresponding Δfliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-3978.1kJ/molCcbVerkade and Coops, 1927Corrected for 298 and 1 atm.; Corresponding Δfliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid287.4J/mol*KN/AKelley, 1929, 2DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
243.2298.15Atrashenok, Nesterov, et al., 1991T = 227 to 363 K. Cp(liq) = 2.37095 - 0.0851173(T/100) - 0.195794(T/100)2 - 0.00639224(T/100)3 + 0.0530459(T/100)4 - 0.00859433(T/100)5 kJ/kg*K.; DH
242.5298.15Vesely, Barcal, et al., 1989T = 298.15 to 318.15 K.; DH
241.32298.15Andreoli-Ball, Patterson, et al., 1988DH
237.85298.15Ortega, 1986DH
240.57298.15Tanaka, Toyama, et al., 1986DH
239.68298.15Costas and Patterson, 1985T = 283.15, 298.15, 313.15 K.; DH
239.62298.15Bravo, Pintos, et al., 1984DH
249.15300.607Kalinowska and Woycicki, 1984T = 230 to 300 K. Value is unsmoothed experimental datum.; DH
241.32298.15Zegers and Somsen, 1984DH
240.65298.15Benson, D'Arcy, et al., 1983DH
236.5293.15Arutyunyan, 1981T = 273 to 533 K. p = 0.1 MPa. Unsmoothed experimental datum at 293.15 K, Cp = 2.315 kJ/kg*K.; DH
236.5293.15Arutyunyan, 1981T = 293 to 393 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.315 kJ/kg*K. Cp given from 293.15 to 533.15 K for pressure range 10 to 60 MPa.; DH
247.7303.74Griigo'ev, Yanin, et al., 1979T = 303 to 462 K. p = 0.98 bar.; DH
244.8298.Hutchinson and Bailey, 1959DH
232.46290.01Kelley, 1929, 2T = 16 to 298 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil430. ± 2.KAVGN/AAverage of 54 out of 59 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus225. ± 5.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple225.8KN/AKelley, 1929, 3Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tc610.5 ± 0.9KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Pc34.2 ± 0.2barN/AGude and Teja, 1995 
Pc34.20barN/AQuadri, Khilar, et al., 1991Uncertainty assigned by TRC = 0.50 bar; TRC
Pc34.13barN/ARosenthal and Teja, 1990Uncertainty assigned by TRC = 0.06 bar; TRC
Pc34.13barN/ARosenthal and Teja, 1989Uncertainty assigned by TRC = 0.20 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.387l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc2.58 ± 0.02mol/lN/AGude and Teja, 1995 
ρc2.62mol/lN/ATeja, Lee, et al., 1989TRC
ρc2.54mol/lN/AAnselme and Teja, 1988Uncertainty assigned by TRC = 0.06 mol/l; TRC
ρc2.62mol/lN/AEfremov, 1966Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap61. ± 2.kJ/molAVGN/AAverage of 13 out of 14 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
44.5430.5N/AMajer and Svoboda, 1985 
59.7359.EBGierycz, Kosowski, et al., 2009Based on data from 344. to 384. K.; AC
51.4385.EBTan, Li, et al., 2004Based on data from 370. to 416. K.; AC
62.0288.GSKulikov, Verevkin, et al., 2001Based on data from 265. to 328. K.; AC
61.9 ± 0.2301.GSVerevkin, 1998Based on data from 268. to 333. K.; AC
61.2296.N/AN'Guimbi, Kasehgari, et al., 1992Based on data from 253. to 338. K.; AC
57.7313.AStephenson and Malanowski, 1987Based on data from 298. to 343. K.; AC
58.5340.DTAStephenson and Malanowski, 1987Based on data from 325. to 431. K. See also Kemme and Kreps, 1969.; AC
58.5 ± 0.2328.CMajer, Svoboda, et al., 1985AC
57.6 ± 0.2343.CMajer, Svoboda, et al., 1985AC
55.2 ± 0.2358.CMajer, Svoboda, et al., 1985AC
53.8 ± 0.2368.CMajer, Svoboda, et al., 1985AC
47.9395.EBReddy, Rao, et al., 1985Based on data from 380. to 417. K.; AC
57.9323.N/AWilhoit and Zwolinski, 1973Based on data from 308. to 430. K.; AC
56.0349.N/ARose and Supina, 1961Based on data from 334. to 381. K.; AC
57.9348.N/AButler, Ramchandani, et al., 1935Based on data from 333. to 425. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 368.
A (kJ/mol) 72.06
α -1.059
β 1.0052
Tc (K) 610.
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
325.4 to 430.54.412711422.031-107.706Kemme and Kreps, 1969 
334.1 to 381.75.643562117.967-51.988Rose and Supina, 1961Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
15.380225.8Kelley, 1929, 2DH
15.48225.8Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
68.11225.8Kelley, 1929, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H13O- + Hydrogen cation = 1-Hexanol

By formula: C6H13O- + H+ = C6H14O

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSHiggins and Bartmess, 1998gas phase; B
Δr1565. ± 13.kJ/molCIDCHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.; B
Δr1561. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1537. ± 8.4kJ/molIMREHiggins and Bartmess, 1998gas phase; B
Δr1538. ± 13.kJ/molH-TSHaas and Harrison, 1993gas phase; Kinetic method gives energy-dependent results.; B
Δr1533. ± 11.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

C3H9Sn+ + 1-Hexanol = (C3H9Sn+ • 1-Hexanol)

By formula: C3H9Sn+ + C6H14O = (C3H9Sn+ • C6H14O)

Quantity Value Units Method Reference Comment
Δr157.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr139.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
83.7525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 19937

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Green J.H.S., 1961
Green J.H.S., Thermodynamic properties of the normal alcohols C1-C12, J. Appl. Chem., 1961, 11, 397-404. [all data]

Chermin H.A.G., 1961
Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]

Mosselman and Dekker, 1975
Mosselman, C.; Dekker, H., Enthalpies of formation of n-alkan-1-ols, J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Kelley, 1929
Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K. to 298°K. and the corresponding entropies and free energies and free energies, J. Am. Chem. Soc., 1929, 51, 779-781. [all data]

Verkade and Coops, 1927
Verkade, P.E.; Coops, J., Jr., Calorimetric researches XIV. Heats of combustion of successive members of homologous series: the normal primary aliphatic alcohols, Recl. Trav. Chim. Pays-Bas, 1927, 46, 903-917. [all data]

Kelley, 1929, 2
Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 779-786. [all data]

Atrashenok, Nesterov, et al., 1991
Atrashenok, T.R.; Nesterov, N.A.; Zhuk, I.P.; Peshchenko, A.D., Measured specific heats of hexan-1-ol and 3-methyl-2-butanol over wide temperature ranges, Inzh.-Fiz. Zh., 1991, 61(2), 301-304. [all data]

Vesely, Barcal, et al., 1989
Vesely, F.; Barcal, P.; Zabransky, M.; Svoboda, V., Heat capacities of 4-methyl-2-pentanone, 2,6-dimethyl-4-heptanone, 1-hexanol, 1-heptanol, and 1-octanol in the temperature range 298-318 K, Collect. Czech. Chem. Commun., 1989, 54, 602-607. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Ortega, 1986
Ortega, J., Excess molar heat capacities of the binary mixtures of cyclohexane with isomers of hexanol at 298.15 K, Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 307-315. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Bravo, Pintos, et al., 1984
Bravo, R.; Pintos, M.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Excess volumes excess heat capacities of some mixtures: (an isomer of hexanol + an n-alkane) at 298.15 K, J. Chem. Thermodynam., 1984, 16, 73-79. [all data]

Kalinowska and Woycicki, 1984
Kalinowska, B.; Woycicki, W., Heat capacities of liquids in the temperature interval between 90 and 300 K and at atmospheric pressure. III. Heat capacities and excess heat capacities of (n-hexanol-1-ol + n-hexane), J. Chem. Thermodynam., 1984, 16, 609-613. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson, D'Arcy, et al., 1983
Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E., Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K, Thermochim. Acta, 1983, 71, 161-166. [all data]

Arutyunyan, 1981
Arutyunyan, G.S., Experimental investigaiton of the isobaric heat capacity of n-hexyl alcohol at different temperatures and pressures, Izv. Akad. Nauk Azerb., 1981, SSR (2), 97-99. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Hutchinson and Bailey, 1959
Hutchinson, E.; Bailey, L.G., A thermodynamic study of colloidal electrolyte solutions. II. Heat capacities of solubilized systems, experimental, Z. Physik. Chem. [N.G.], 1959, 21, 30-37. [all data]

Kelley, 1929, 3
Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16 to 298 K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 779-87. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Quadri, Khilar, et al., 1991
Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J., Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols, J. Chem. Thermodyn., 1991, 23, 67-76. [all data]

Rosenthal and Teja, 1990
Rosenthal, D.J.; Teja, A.S., The Critical Pressures and temperatures of Isomeric Alkanols, Ind. Eng. Chem. to be published 1990 1990, 1990. [all data]

Rosenthal and Teja, 1989
Rosenthal, D.J.; Teja, A.S., Critical pressures and temperatures of isomeric alkanols, Ind. Eng. Chem. Res., 1989, 28, 1693. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Anselme and Teja, 1988
Anselme, M.J.; Teja, A.S., Critical Temperatures and Densities of Isomeric Alkanols with Six to Ten Carbon Atoms, Fluid Phase Equilib., 1988, 40, 127-34. [all data]

Efremov, 1966
Efremov, Yu.V., Density, Surface Tension, Saturated Vapor Pressurs and Critical Parameters of Alcohols, Zh. Fiz. Khim., 1966, 40, 1240. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard, Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols, J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z . [all data]

Tan, Li, et al., 2004
Tan, Taijun; Li, Haoran; Wang, Congmin; Jiang, Hui; Han, Shijun, Isothermal and isobaric vapor--liquid equilibria for the binary system trimethylbenzoquinone + n-hexanol, Fluid Phase Equilibria, 2004, 224, 2, 279-283, https://doi.org/10.1016/j.fluid.2004.06.056 . [all data]

Kulikov, Verevkin, et al., 2001
Kulikov, Dmitry; Verevkin, Sergey P.; Heintz, Andreas, Enthalpies of vaporization of a series of aliphatic alcohols, Fluid Phase Equilibria, 2001, 192, 1-2, 187-207, https://doi.org/10.1016/S0378-3812(01)00633-1 . [all data]

Verevkin, 1998
Verevkin, Sergey P., Thermochemistry of phenols: experimental standard molar enthalpies of formation of 2-phenylphenol, 4-phenylphenol, 2,6-diphenylphenol, and 2,2´- and 4,4´-dihydroxybiphenyl, The Journal of Chemical Thermodynamics, 1998, 30, 3, 389-396, https://doi.org/10.1006/jcht.1997.0316 . [all data]

N'Guimbi, Kasehgari, et al., 1992
N'Guimbi, J.; Kasehgari, H.; Mokbel, I.; Jose, J., Tensions de vapeur d'alcools primaires dans le domaine 0,3 Pa à 1,5 kPa, Thermochimica Acta, 1992, 196, 2, 367-377, https://doi.org/10.1016/0040-6031(92)80100-B . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]

Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Uchytilová, V.; Finke, M., Enthalpies of vaporization of aliphatic C5 and C6 alcohols, Fluid Phase Equilibria, 1985, 20, 111-118, https://doi.org/10.1016/0378-3812(85)90026-3 . [all data]

Reddy, Rao, et al., 1985
Reddy, K. Dayananda; Rao, M.V. Prabhakara; Ramakrishna, M., Activity coefficients and excess Gibbs free energies for the systems isobutyl methyl ketone(1)-1-pentanol(2) and isobutyl methyl ketone(1)-1-hexanol (2), J. Chem. Eng. Data, 1985, 30, 4, 394-397, https://doi.org/10.1021/je00042a008 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Rose and Supina, 1961
Rose, Arthur; Supina, W.R., Vapor Pressure and Vapor-Liquid Equilibrium Data for Methyl Esters of the Common Saturated Normal Fatty Acids., J. Chem. Eng. Data, 1961, 6, 2, 173-179, https://doi.org/10.1021/je60010a003 . [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., 58. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., 1935, 280, https://doi.org/10.1039/jr9350000280 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References