Heptanedioic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δcsolid-3460.2 ± 1.0kJ/molCcbVerkade, Hartman, et al., 1926Reanalyzed by Cox and Pilcher, 1970, Original value = -3463. kJ/mol; See Verkade, Hartman, et al., 1924; Corresponding Δfsolid = -1009.4 kJ/mol (simple calculation by NIST; no Washburn corrections)

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tfus377.5KN/ABerchiesi, 1981Uncertainty assigned by TRC = 0.4 K; TRC
Tfus377.5KN/AGioia Lobbia, 1981Uncertainty assigned by TRC = 0.3 K; TRC
Tfus378.KN/AKhetarpal, Lal, et al., 1980Uncertainty assigned by TRC = 1.5 K; TRC
Tfus377.5KN/ACingolani and Berchiesi, 1974Crystal phase 1 phase; Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Δvap112.0 ± 0.8kJ/molCGCRoux, Temprado, et al., 2005Based on data from 424. to 503. K.; AC
Quantity Value Units Method Reference Comment
Δsub139.9 ± 1.0kJ/molN/ARibeiro da Silva, Monte, et al., 1999AC

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
485.20.013Aldrich Chemical Company Inc., 1990BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
88.6451.AStephenson and Malanowski, 1987Based on data from 436. to 615. K. See also Stull, 1947.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
436.6 to 615.36.674323943.314-23.802Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
153. ± 4.328. to 363.TPDCappa, Lovejoy, et al., 2007AC
124.283. to 300.TPTDChattopadhyay and Ziemann, 2005AC
80.8318. to 336.TPTDChattopadhyay and Ziemann, 2005AC
178.288. to 308.TPTDChattopadhyay, Tobias, et al., 2001Values based on the TPTD method are not consistent with values determined by other experimental methods; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
23.7368.2Roux, Temprado, et al., 2005AC
27.62377.5Acree, 1993AC

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
1.000369.7crystaline, IIcrystaline, IPetropavlov, Tsygankova, et al., 1988DH
1.322369.0crystaline, IIcrystaline, ICingolani and Berchiesi, 1974DH
27.623377.5crystaline, IliquidCingolani and Berchiesi, 1974DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
2.7369.7crystaline, IIcrystaline, IPetropavlov, Tsygankova, et al., 1988DH
3.60369.0crystaline, IIcrystaline, ICingolani and Berchiesi, 1974DH
73.18377.5crystaline, IliquidCingolani and Berchiesi, 1974DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C7H11O4- + Hydrogen cation = Heptanedioic acid

By formula: C7H11O4- + H+ = C7H12O4

Quantity Value Units Method Reference Comment
Δr1358. ± 8.4kJ/molCIDCKumar, Prabhakar, et al., 2005gas phase
Quantity Value Units Method Reference Comment
Δr1351. ± 8.4kJ/molCIDCKumar, Prabhakar, et al., 2005gas phase

Gas phase ion energetics data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

De-protonation reactions

C7H11O4- + Hydrogen cation = Heptanedioic acid

By formula: C7H11O4- + H+ = C7H12O4

Quantity Value Units Method Reference Comment
Δr1358. ± 8.4kJ/molCIDCKumar, Prabhakar, et al., 2005gas phase
Quantity Value Units Method Reference Comment
Δr1351. ± 8.4kJ/molCIDCKumar, Prabhakar, et al., 2005gas phase

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1739
NIST MS number 229424

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Verkade, Hartman, et al., 1926
Verkade, P.E.; Hartman, H.; Coops, J., Calorimetric researches. X. Heats of combustion of successive terms of homologous series: dicarboxylic acids of the oxalic acid series, Rec. Trav. Chim. Pays/Bas, 1926, 45, 373-393. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Verkade, Hartman, et al., 1924
Verkade, P.E.; Hartman, H.; Coops, J., Jr., Chemistry - The molecular heat of combustion of successive terms of homologous series, Kom. Med. Akad. Ueknschap. Proc., 1924, 27, 859-866. [all data]

Berchiesi, 1981
Berchiesi, M.A., Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1981, No. 2, 123. [all data]

Gioia Lobbia, 1981
Gioia Lobbia, G., Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1981, No. 1, 46. [all data]

Khetarpal, Lal, et al., 1980
Khetarpal, S.C.; Lal, K.; Bhatnagar, H.I., Indian J. Chem., Sect. A:Inorg., Phys., Theor. Anal., 1980, 19A, 516. [all data]

Cingolani and Berchiesi, 1974
Cingolani, A.; Berchiesi, G., Thermodynamic properties of organic compounds. 1. A DSC study of phase transitions in aliphatic dicarboxylic acids, J. Therm. Anal., 1974, 6, 87-90. [all data]

Roux, Temprado, et al., 2005
Roux, Maria Victoria; Temprado, Manuel; Chickos, James S., Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16, The Journal of Chemical Thermodynamics, 2005, 37, 9, 941-953, https://doi.org/10.1016/j.jct.2004.12.011 . [all data]

Ribeiro da Silva, Monte, et al., 1999
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Ribeiro, José R., Vapour pressures and the enthalpies and entropies of sublimation of five dicarboxylic acids, The Journal of Chemical Thermodynamics, 1999, 31, 8, 1093-1107, https://doi.org/10.1006/jcht.1999.0522 . [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Cappa, Lovejoy, et al., 2007
Cappa, Christopher D.; Lovejoy, Edward R.; Ravishankara, A.R., Determination of Evaporation Rates and Vapor Pressures of Very Low Volatility Compounds: A Study of the C 4 -C 10 and C 12 Dicarboxylic Acids, J. Phys. Chem. A, 2007, 111, 16, 3099-3109, https://doi.org/10.1021/jp068686q . [all data]

Chattopadhyay and Ziemann, 2005
Chattopadhyay, Sulekha; Ziemann, Paul J., Vapor Pressures of Substituted and Unsubstituted Monocarboxylic and Dicarboxylic Acids Measured Using an Improved Thermal Desorption Particle Beam Mass Spectrometry Method, Aerosol Science and Technology, 2005, 39, 11, 1085-1100, https://doi.org/10.1080/02786820500421547 . [all data]

Chattopadhyay, Tobias, et al., 2001
Chattopadhyay, Sulekha; Tobias, Herbert J.; Ziemann, Paul J., A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer, Anal. Chem., 2001, 73, 16, 3797-3803, https://doi.org/10.1021/ac010304j . [all data]

Acree, 1993
Acree, William E., Thermodynamic properties of organic compounds, Thermochimica Acta, 1993, 219, 97-104, https://doi.org/10.1016/0040-6031(93)80486-T . [all data]

Petropavlov, Tsygankova, et al., 1988
Petropavlov, N.N.; Tsygankova, I.G.; Teslenko, L.A., Microcalorimetric investigation of polymorphic transitions in organic crystals, Sov. Phys. Crystallogr., 1988, 33(6), 853-855. [all data]

Kumar, Prabhakar, et al., 2005
Kumar, M.R.; Prabhakar, S.; Nagaveni, V.; Vairamani, M., Estimation of gas-phase acidities of a series of dicarboxylic acids by the kinetic method, Rapid Commun. Mass Spectrom., 2005, 19, 8, 1053-1057, https://doi.org/10.1002/rcm.1888 . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References