Cyclohexene
- Formula: C6H10
- Molecular weight: 82.1436
- IUPAC Standard InChIKey: HGCIXCUEYOPUTN-UHFFFAOYSA-N
- CAS Registry Number: 110-83-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene tetrahydride; Benzene, tetrahydro-; Cyclohex-1-ene; Tetrahydrobenzene; 1,2,3,4-Tetrahydrobenzene; Cykloheksen; Hexanaphthylene; UN 2256; 1-Cyclohexene; NSC 24835
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -1.03 ± 0.23 | kcal/mol | Ccr | Steele, Chirico, et al., 1996 | ALS |
ΔfH°gas | -1.1 | kcal/mol | N/A | Good and Smith, 1969 | Value computed using ΔfHliquid° value of -38.2±0.6 kj/mol from Good and Smith, 1969 and ΔvapH° value of 33.5 kj/mol from Steele, Chirico, et al., 1996.; DRB |
ΔfH°gas | -1.3 | kcal/mol | N/A | Labbauf and Rossini, 1961 | Value computed using ΔfHliquid° value of -38.8±0.6 kj/mol from Labbauf and Rossini, 1961 and ΔvapH° value of 33.5 kj/mol from Steele, Chirico, et al., 1996.; DRB |
ΔfH°gas | -1.7 | kcal/mol | N/A | Epstein, Pitzer, et al., 1949 | Value computed using ΔfHliquid° value of -40.6±0.8 kj/mol from Epstein, Pitzer, et al., 1949 and ΔvapH° value of 33.5 kj/mol from Steele, Chirico, et al., 1996.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 74.199 | cal/mol*K | N/A | Beckett C.W., 1948 | GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.394 | 50. | Dorofeeva O.V., 1986 | Recommended S(298.15 K) value agrees well with experimental one [ Beckett C.W., 1948], however calculated Cp(T) values are about 5 J/mol*K lower than those obtained from experimental measurements [ Montgomery J.B., 1942]. To fit calculated Cp(T) values to experiment, [ Beckett C.W., 1948] suggested existence of stable half-boat conformation. This suggestion was found to be incorrect later. [ Dorofeeva O.V., 1986] used more reliable data on molecular structure and their S(T) and Cp(T) values are in good agreement with results of detail force-field calculations [ Lenz T.G., 1990].; GT |
10.29 | 100. | ||
12.85 | 150. | ||
16.10 | 200. | ||
22.02 | 273.15 | ||
24.25 ± 0.72 | 298.15 | ||
24.417 | 300. | ||
33.389 | 400. | ||
41.413 | 500. | ||
48.145 | 600. | ||
53.755 | 700. | ||
58.473 | 800. | ||
62.471 | 900. | ||
65.877 | 1000. | ||
68.793 | 1100. | ||
71.293 | 1200. | ||
73.444 | 1300. | ||
75.301 | 1400. | ||
76.907 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
31.900 | 370. | Montgomery J.B., 1942 | GT |
33.800 | 390. | ||
35.500 | 410. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -9.0 ± 2.0 | kcal/mol | Ccr | Steele, Chirico, et al., 1996 | ALS |
ΔfH°liquid | -9.13 ± 0.14 | kcal/mol | Ccb | Good and Smith, 1969 | ALS |
ΔfH°liquid | -9.28 ± 0.14 | kcal/mol | Ccb | Labbauf and Rossini, 1961 | ALS |
ΔfH°liquid | -9.70 ± 0.19 | kcal/mol | Ccb | Epstein, Pitzer, et al., 1949 | Unpublished results; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -896.84 ± 0.12 | kcal/mol | Ccr | Steele, Chirico, et al., 1996 | Corresponding ΔfHºliquid = -9.039 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -896.75 ± 0.12 | kcal/mol | Ccb | Good and Smith, 1969 | Corresponding ΔfHºliquid = -9.13 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -896.62 ± 0.12 | kcal/mol | Ccb | Labbauf and Rossini, 1961 | Corresponding ΔfHºliquid = -9.26 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -898.8 | kcal/mol | Ccb | Konovalon, 1926 | Heat of combustion at 15°C; Corresponding ΔfHºliquid = -7.1 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 51.291 | cal/mol*K | N/A | Haida, Suga, et al., 1977 | DH |
S°liquid | 51.671 | cal/mol*K | N/A | Huffman, Eaton, et al., 1948 | DH |
S°liquid | 51.79 | cal/mol*K | N/A | Parks and Huffman, 1930 | Extrapolation below 90 K, 49.20 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
35.56 | 298.15 | Steele, Chirico, et al., 1993 | DH |
36.544 | 298.12 | Kalinowska and Woycicki, 1988 | T = 183 to 298 K. Unsmoothed experimental datum.; DH |
35.457 | 298.15 | Haida, Suga, et al., 1977 | T = 15 to 293 K.; DH |
35.650 | 298.15 | Huffman, Eaton, et al., 1948 | T = 12 to 300 K.; DH |
34.80 | 293.2 | Parks and Huffman, 1930 | T = 92 to 293 K. Value is unsmoothed experimental datum.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C6H10 + H2 = C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28. ± 1. | kcal/mol | AVG | N/A | Average of 8 values; Individual data points |
C6H9- + =
By formula: C6H9- + H+ = C6H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 386.5 ± 5.1 | kcal/mol | G+TS | Lee and Squires, 1986 | gas phase; Between H2O, MeOH; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 379.0 ± 5.0 | kcal/mol | IMRB | Lee and Squires, 1986 | gas phase; Between H2O, MeOH; B |
By formula: C3H9Si+ + C6H10 = (C3H9Si+ • C6H10)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.9 | kcal/mol | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 45.6 | cal/mol*K | PHPMS | Li and Stone, 1989 | gas phase; condensation; M |
By formula: CH6N+ + C6H10 = (CH6N+ • C6H10)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.6 | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 16.9 | cal/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: C6H10 + C2HF3O2 = C8H11F3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.36 ± 0.03 | kcal/mol | Cac | Wiberg, Wasserman, et al., 1985 | liquid phase; solvent: Trifluoroacetic acid; Triflouroacetolysis; ALS |
By formula: C6H10 + Br2 = C6H10Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33.630 | kcal/mol | Cm | Lister, 1941 | gas phase; Heat of bromination at 300 K; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.026 | M | N/A | ||
0.022 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.022 | V | N/A |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Steele, Chirico, et al., 1996
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K.; Tasker, I.R.,
Thermodynamic properties and ideal-gas enthalpies of formation for cyclohexene, phthalan (2,5-dihydrobenzo-3,4-furan), isoxazole, octylamine, dioctylamine, trioctylamine, phenyl isocyanate, and 1,4,5,6-tetrahydropyrimidine,
J. Chem. Eng. Data, 1996, 41, 1269-1284. [all data]
Good and Smith, 1969
Good, W.D.; Smith, N.K.,
Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane,
J. Chem. Eng. Data, 1969, 14, 102-106. [all data]
Labbauf and Rossini, 1961
Labbauf, A.; Rossini, F.D.,
Heats of combustion, formation, and hydrogenation of 14 selected cyclomonoolefin hydrocarbons,
J. Phys. Chem., 1961, 65, 476-480. [all data]
Epstein, Pitzer, et al., 1949
Epstein, M.B.; Pitzer, K.S.; Rossini, F.D.,
Heats, equilibrium constants, and free energies of formation of cyclopentene and cyclohexene,
J. Res. NBS, 1949, 42, 379-382. [all data]
Beckett C.W., 1948
Beckett C.W.,
The thermodynamic properties and molecular structure of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 4227-4230. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
Thermodynamic properties of twenty-one monocyclic hydrocarbons,
J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]
Montgomery J.B., 1942
Montgomery J.B.,
The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene,
J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]
Lenz T.G., 1990
Lenz T.G.,
Force field calculation of equilibrium thermodynamic properties: Diels-Alder reaction of 1,3-butadiene and ethylene and Diels-Alder dimerization of 1,3-butadiene,
J. Comput. Chem., 1990, 11, 351-360. [all data]
Konovalon, 1926
Konovalon, D.-P.,
Sur Les Chaleurs de Combustion de Quelques hydrocarbures cycliques,
J. Chim. Phys., 1926, 23, 359-362. [all data]
Haida, Suga, et al., 1977
Haida, O.; Suga, H.; Seki, S.,
Calorimetric study of the glassy state. XI. Plural glass-transition phenomena of cyclohexene,
Bull. Chem. Soc. Japan, 1977, 50, 802-809. [all data]
Huffman, Eaton, et al., 1948
Huffman, H.M.; Eaton, M.; Oliver, G.D.,
The heat capacities, heats of transition, heats of fusion and entropies of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 2911-2914. [all data]
Parks and Huffman, 1930
Parks, G.S.; Huffman, H.M.,
Thermal data on organic compounds. IX. A study of the effect of unsaturation on the heat capacities, entropies and free energies of some hydrocarbons and other compounds,
J. Am. Chem. Soc., 1930, 52, 4381-4391. [all data]
Steele, Chirico, et al., 1993
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Tasker, I.R.,
Determination of ideal gas enthalpies of formation for key compounds the 1991 project results,
DIPPR Project, 1993, 871, NIPER-716. [all data]
Kalinowska and Woycicki, 1988
Kalinowska, B.; Woycicki, W.,
Heat capacities and excess heat capacities of (an alkanol + an unsaturated hydrocarbon). II. (Propan-1-ol + cyclohexene),
J. Chem. Thermodynam., 1988, 20, 1131-1135. [all data]
Lee and Squires, 1986
Lee, R.E.; Squires, R.R.,
Anionic homoaromaticity: A gas phase experimental study,
J. Am. Chem. Soc., 1986, 105, 5078. [all data]
Li and Stone, 1989
Li, X.; Stone, J.A.,
Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes,
J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013
. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Wiberg, Wasserman, et al., 1985
Wiberg, K.B.; Wasserman, D.J.; Martin, E.J.; Murcko, M.A.,
Enthalpies of hydration of alkenes. 3. Cycloalkenes,
J. Am. Chem. Soc., 1985, 107, 6019-6022. [all data]
Lister, 1941
Lister, M.W.,
Heats of organic reactions. X. Heats of bromination of cyclic olefins,
J. Am. Chem. Soc., 1941, 63, 143-149. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.