Oxygen anion
- Formula: O2-
- Molecular weight: 31.9993
- IUPAC Standard InChIKey: OUUQCZGPVNCOIJ-UHFFFAOYSA-M
- CAS Registry Number: 11062-77-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Reaction thermochemistry data
Go To: Top, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: O2- + O2 = (O2- • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48. ± 20. | kJ/mol | AVG | N/A | Average of 5 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
ΔrS° | 130. | J/mol*K | PHPMS | Conway and Nesbit, 1968 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13. ± 4.6 | kJ/mol | TDAs | Hiraoka, 1888 | gas phase; see also Sherwood, Hanold, et al., 1996. Aquino, Taylor, et al., 2001 calns indicate rectangular anion; B |
ΔrG° | 23. ± 4.2 | kJ/mol | IMRE | Payzant J.D. and Kebarle, 1972 | gas phase; B |
ΔrG° | 13. ± 4.2 | kJ/mol | IMRE | Pack and Phelps, 1971 | gas phase; B |
ΔrG° | 16.7 ± 2.1 | kJ/mol | IMRE | Parkes, 1971 | gas phase; B |
ΔrG° | 16. ± 4.2 | kJ/mol | TDAs | Conway and Nesbit, 1968 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 300. | DT | Pack and Phelps, 1971 | gas phase; M |
By formula: O2- + CO2 = (O2- • CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.50 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
ΔrH° | 74.1 ± 7.5 | kJ/mol | IMRE | Pack and Phelps, 1966 | gas phase; Corrected with more recent EA(O2) = 0.45 eV; B,M |
ΔrH° | 106. ± 19. | kJ/mol | PDis | Vestal and Mauclaire, 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 101. | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
ΔrS° | 88. | J/mol*K | DT | Pack and Phelps, 1966 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 49.0 ± 8.4 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
ΔrG° | 51.0 ± 5.0 | kJ/mol | IMRE | Pack and Phelps, 1966 | gas phase; Corrected with more recent EA(O2) = 0.45 eV; B |
ΔrG° | 41.8 | kJ/mol | FA | Adams and Bohme, 1970 | gas phase; switching reaction(O2-)O2; Conway and Nesbit, 1968; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.0 | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(O2-)H2O; Arshadi and Kebarle, 1970; M |
By formula: (O2- • H2O) + H2O = (O2- • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.0 ± 4.2 | kJ/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | PHPMS | Arshadi and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 40.6 | kJ/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
ΔrG° | 36. ± 4.2 | kJ/mol | IMRE | Payzant J.D. and Kebarle, 1972 | gas phase; B |
ΔrG° | 41. ± 4.2 | kJ/mol | IMRE | Pack and Phelps, 1971 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
35. | 300. | PHPMS | Payzant J.D. and Kebarle, 1972 | gas phase; M |
By formula: (O2- • 2H2O) + H2O = (O2- • 3H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.4 ± 4.2 | kJ/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | PHPMS | Arshadi and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 29.3 | kJ/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
ΔrG° | 26. ± 8.4 | kJ/mol | TDAs | Kebarle, Arshadi, et al., 1968 | gas phase; B,M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
22. | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; M |
30. | 300. | PHPMS | Payzant J.D. and Kebarle, 1972 | gas phase; M |
By formula: O2- + H2O = (O2- • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 93.3 ± 6.3 | kJ/mol | N/A | Luong, Clements, et al., 2001 | gas phase; Vertical Detachment Energy: 2.03±0.05 eV.; B |
ΔrH° | 77.0 ± 8.4 | kJ/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84.1 | J/mol*K | PHPMS | Arshadi and Kebarle, 1970 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 52.3 ± 8.4 | kJ/mol | TDAs | Arshadi and Kebarle, 1970 | gas phase; B |
ΔrG° | 49.0 ± 8.4 | kJ/mol | IMRE | Parkes, 1971 | gas phase; B |
By formula: (O2- • 7N2 • O2) + N2 = (O2- • 8N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
ΔrH° | 6.40 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
ΔrS° | 75.3 | J/mol*K | N/A | Hiraoka, 1988, 2 | gas phase; Entropy change calculated or estimated; M |
By formula: (O2- • 2N2O) + N2O = (O2- • 3N2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.8 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (O2- • 3N2O) + N2O = (O2- • 4N2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.8 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -6.3 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (O2- • 4N2O) + N2O = (O2- • 5N2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.2 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.9 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (O2- • 5N2O) + N2O = (O2- • 6N2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.9 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -9.2 ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (O2- • N2O) + N2O = (O2- • 2N2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.4 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3. ± 4.2 | kJ/mol | TDAs | Hiraoka, Fujimaki, et al., 1994 | gas phase; B |
By formula: (O2- • 2CH4O) + CH4O = (O2- • 3CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.5 ± 2.9 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 117. | J/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.8 ± 1.3 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • 2C2H3N) + C2H3N = (O2- • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.8 ± 2.5 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.8 ± 0.84 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: O2- + N2O = (O2- • N2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <56.90 | kJ/mol | IMRB | Adams and Bohme, 1970 | gas phase; N2O..O2- + O2 -> O4- + N2O; B |
ΔrH° | 37. | kJ/mol | PHPMS | Hiraoka, Fujimaki, et al., 1994 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Fujimaki, et al., 1994 | gas phase; M |
By formula: (O2- • 3C2H3N) + C2H3N = (O2- • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.7 ± 2.1 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.7 | J/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.7 ± 0.42 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • CH4O) + CH4O = (O2- • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.9 ± 3.3 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 104. | J/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 33.9 ± 1.7 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • C2H3N) + C2H3N = (O2- • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.4 ± 2.9 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.0 | J/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 32.2 ± 1.7 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • 2CO2) + CO2 = (O2- • 3CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 3CO2) + CO2 = (O2- • 4CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -3. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 4CO2) + CO2 = (O2- • 5CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 77.0 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -4.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 5CO2) + CO2 = (O2- • 6CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -6.3 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • 6CO2) + CO2 = (O2- • 7CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17. ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.8 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | -7.5 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: (O2- • CO2) + CO2 = (O2- • 2CO2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.6 ± 0.84 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka and Yamabe, 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.6 ± 4.2 | kJ/mol | TDAs | Hiraoka and Yamabe, 1992 | gas phase; B |
By formula: O2- + CH4O = (O2- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.91 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 91.6 | J/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 52.30 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: O2- + C2H3N = (O2- • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.62 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 72.8 | J/mol*K | PHPMS | Yamdagni, Payzant, et al., 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 46.86 | kJ/mol | TDAs | Yamdagni, Payzant, et al., 1973 | gas phase; B |
By formula: (O2- • 6O2) + O2 = (O2- • 7O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 5.86 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 67. | J/mol*K | N/A | Hiraoka, 1988 | gas phase; Entropy change calculated or estimated; M |
By formula: O2- + N2 = (O2- • N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25. ± 4.2 | kJ/mol | N/A | Posey and Johnson, 1988 | gas phase; B |
ΔrH° | <56.90 | kJ/mol | IMRB | Adams and Bohme, 1970 | gas phase; N2..O2- + O2 -> O4-; B |
By formula: O2- + CO = (O2- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <56.90 | kJ/mol | IMRB | Adams and Bohme, 1970 | gas phase; CO..O2- + O2 -> O4- + CO. G3MP2B3 calculations indicate a HOF(A-) ca. -38 kcal/mol; B |
By formula: (O2- • 2N2 • O2) + N2 = (O2- • 3N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.3 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.6 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 3N2 • O2) + N2 = (O2- • 4N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 4N2 • O2) + N2 = (O2- • 5N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.6 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 5N2 • O2) + N2 = (O2- • 6N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.6 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 81.6 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 6N2 • O2) + N2 = (O2- • 7N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.1 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.7 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • N2 • O2) + N2 = (O2- • 2N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.7 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 74.9 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 4294967295O) + O = O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 400.7 | kJ/mol | N/A | Ervin, Anusiewicz, et al., 2003 | gas phase; B |
ΔrH° | 401. ± 4.2 | kJ/mol | Ther | Travers, Cowles, et al., 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1476.9 ± 3.0 | kJ/mol | D-EA | Travers, Cowles, et al., 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1450.5 ± 3.4 | kJ/mol | H-TS | Travers, Cowles, et al., 1989 | gas phase; B |
By formula: (O2- • O2) + N2 = (O2- • N2 • O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 69.0 | J/mol*K | PHPMS | Hiraoka, 1988, 2 | gas phase; M |
By formula: (O2- • 3H2O) + H2O = (O2- • 4H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 18. ± 8.4 | kJ/mol | TDAs | Kebarle, Arshadi, et al., 1968 | gas phase; B,M |
ΔrG° | 14. | kJ/mol | PHPMS | Arshadi and Kebarle, 1970 | gas phase; M |
By formula: (O2- • 2O2) + O2 = (O2- • 3O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.0 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 89.1 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • 3O2) + O2 = (O2- • 4O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.4 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • 4O2) + O2 = (O2- • 5O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.4 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 64.4 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • 5O2) + O2 = (O2- • 6O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6. ± 1. | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 67.8 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • O2) + O2 = (O2- • 2O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.5 ± 0.8 | kJ/mol | PHPMS | Hiraoka, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 87.4 | J/mol*K | PHPMS | Hiraoka, 1988 | gas phase; M |
By formula: (O2- • H2O) + CO2 = (O2- • CO2 • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
34. | 296. | FA | Fehsenfeld and Ferguson, 1974 | gas phase; switching reaction(O2-)2H2O; Arshadi and Kebarle, 1970; M |
+ = C5H5NO2-
By formula: O2- + C5H5N = C5H5NO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90.8 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
+ = C6H6O2-
By formula: O2- + C6H6 = C6H6O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.0 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
+ = C10H8O2-
By formula: O2- + C10H8 = C10H8O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 92.5 ± 9.6 | kJ/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: O2- + Ar = (O2- • Ar)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.95 | kJ/mol | N/A | Bowen and Eaton, 1988 | gas phase; Bound by 70 meV relative to EA(O2-.); B |
By formula: (O2- • 4H2O) + H2O = (O2- • 5H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 14. ± 8.4 | kJ/mol | TDAs | Kebarle, Arshadi, et al., 1968 | gas phase; B |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Protonation reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1476.9 ± 3.0 | kJ/mol | D-EA | Travers, Cowles, et al., 1989 | gas phase |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1450.5 ± 3.4 | kJ/mol | H-TS | Travers, Cowles, et al., 1989 | gas phase |
Constants of diatomic molecules
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through March, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
b | 118540 | 1290 1 | 14.27 eV 2 | |||||||||
↳Sanche and Schulz, 1972; Schulz, 1973 | ||||||||||||
a (4Πu) | 97800 | 1044 | 10 3 | 11.68 eV 4 | ||||||||
↳Sanche and Schulz, 1972; Schulz, 1973 | ||||||||||||
Additional resonances in the electron transmission current at 8-11 eV. 2 | ||||||||||||
↳Sanche and Schulz, 1972; Schulz, 1973 | ||||||||||||
Several bound excited states predicted by theoretical calculations Krauss, Neumann, et al., 1973. | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
A (2Πu) | (25300) | (574.5) 5 | (7.1) 5 | A ↔ X 6 | (25000) 7 | |||||||
↳Rolfe, 1964; Ikezawa and Rolfe, 1973 | ||||||||||||
Photodetachment cross sections 6700 - 4600 Å (14900 - 21800 cm-1). | ||||||||||||
↳Cosby, Ling, et al., 1976 | ||||||||||||
X 2Πgi | 0 8 | 1090 9 | 8.1 9 | 1.35 10 11 | ||||||||
↳Creighton and Lippincott, 1964; Holzer, Murphy, et al., 1968 | ||||||||||||
EPR sp. 12 | ||||||||||||
↳Kanzig and Cohen, 1959; Zeller and Kanzig, 1967 |
Notes
1 | Short progression of resonances in electron transmission. 15 |
2 | Energy relative to X 3Σg-(v=0) of neutral O2. |
3 | Long progression of resonances in electron transmission. 16 |
4 | Extrapo1ated energy of v=0 relative to X 3Σg-(v=0) of neutral O2. |
5 | Absorption in KBr, vibrational numbering uncertain Ikezawa and Rolfe, 1973. |
6 | Observed in alkali halide crystals at 4.2 and 2 K. |
7 | Estimated v00 for the free O2- ion, by extrapolation from data for various host crystals Holzer, Murphy, et al., 1968. |
8 | A = -160 cm-1 103. |
9 | From electron scattering cross sections for gaseous O2 Boness and Schulz, 1970, Linder and Schmidt, 1971; similar measurements by Gray, Haselton, et al., 1972 suggest ωe = 1140 Gray, Haselton, et al., 1972, ωexe = 12 Gray, Haselton, et al., 1972. A direct measurement of ΔG"(1/2) in the photodetachment spectrum Celotta, Bennett, et al., 1972 gives ΔG"(1/2) ~ 1090 cm-1 Celotta, Bennett, et al., 1972, in agreement with extrapolations from Raman frequencies in alkali halide crystals Holzer, Murphy, et al., 1968. Anharmonicities derived from low-temperature fluorescence spectra (see 6) are approximately 8.7 Ikezawa and Rolfe, 1973. |
10 | From a Franck-Condon factor analysis of the photodetachment spectrum Celotta, Bennett, et al., 1972 and a similar evaluation by Parlant and Fiquet-Fayard, 1976 of the electron scattering data of Linder and Schmidt, 1971. |
11 | Raman sp. 17 |
12 | In alkali halide crystals. |
13 | From D00(O2) and the electron affinities of O(1.462 eV) and O2. |
14 | From the O2- photodetachment spectrum Celotta, Bennett, et al., 1972; see also Pack and Phelps, 1966, 2. From endothermic negative-ion charge-transfer reactions Tiernan, Hughes, et al., 1971 obtain I.P. ≥ 0.45 ± 0.1 eV. The theoretical value is 0.42eV Zemke, Das, et al., 1972. |
15 | "Band b". Suggested "grandparent" state b 4Σg- of O2+. |
16 | "Band a". The negative ion state results from the addition of two Rydberg electrons in the 3sσg orbital to the O2+ core in the a 4Πu state ("grandparent"). |
17 | In alkali ha1ide crystals and in solid KO2 and NaO2. |
References
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Hiraoka, 1988
Hiraoka, K.,
A Determination of the Stabilities of O2+(O2)n and O2-(O2)n with n = 1 - 8 from Measurements of the Gas-Phase Ion Equilibria,
J. Chem. Phys., 1988, 89, 5, 3190, https://doi.org/10.1063/1.454976
. [all data]
Conway and Nesbit, 1968
Conway, D.C.; Nesbit, L.E.,
Stability of O4-,
J. Chem. Phys., 1968, 48, 1, 509, https://doi.org/10.1063/1.1667956
. [all data]
Hiraoka, 1888
Hiraoka, K.,
A Determination of the Stability of O2+(O2)n and O2-(O2)n with n=1-8 from Measurements of the Gas Phase Ion Equilibria,
J. Chem. Phys., 1888, 89, 5, 3190, https://doi.org/10.1063/1.454976
. [all data]
Sherwood, Hanold, et al., 1996
Sherwood, C.R.; Hanold, K.A.; Garner, M.C.; Strong, K.M.; Continetti, R.E.,
Translational Spectroscopy Studies of the Photodissociation Dynamics of O4-,
J. Chem. Phys., 1996, 105, 24, 10803, https://doi.org/10.1063/1.472888
. [all data]
Aquino, Taylor, et al., 2001
Aquino, A.J.A.; Taylor, P.R.; Walch, S.P.,
Structure, properties, and photodissociation of O-4(-),
J. Chem. Phys., 2001, 114, 7, 3010-3017, https://doi.org/10.1063/1.1288379
. [all data]
Payzant J.D. and Kebarle, 1972
Payzant J.D.; Kebarle, P.,
Kinetics and Reactions Leading to O2-(H2O)n in Moist Oxygen,
J. Chem. Phys., 1972, 56, 7, 3482, https://doi.org/10.1063/1.1677723
. [all data]
Pack and Phelps, 1971
Pack, J.L.; Phelps, A.V.,
Hydration of Oxygen Negative Ions,
Bull. Am. Phys. Soc., 1971, 16, 214. [all data]
Parkes, 1971
Parkes, D.A.,
Electron Attachment and Negative Ion-Molecule Reactions in Pure O2,
Trans. Farad. Soc., 1971, 97, 711, https://doi.org/10.1039/tf9716700711
. [all data]
Hiraoka and Yamabe, 1992
Hiraoka, K.; Yamabe, S.,
Formation of the Chelate Bonds in the Cluster O2(-)(CO2)n, CO3(-)(CO2)n, and NO2(-)(CO2)n,
J. Chem. Phys., 1992, 97, 1, 643, https://doi.org/10.1063/1.463560
. [all data]
Pack and Phelps, 1966
Pack, J.L.; Phelps, A.V.,
Electron Attachment and Detachment . II. Mixtures of O2 and CO2 and of O2 and H2O,
J. Chem. Phys., 1966, 45, 11, 4316, https://doi.org/10.1063/1.1727491
. [all data]
Vestal and Mauclaire, 1977
Vestal, M.L.; Mauclaire, G.H.,
Photodissociaton of negative ions formed in CO2 and CO2/O2 Mixtures,
J. Chem. Phys., 1977, 67, 3758. [all data]
Adams and Bohme, 1970
Adams, N.G.; Bohme, D.,
Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-,
J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449
. [all data]
Fehsenfeld and Ferguson, 1974
Fehsenfeld, F.C.; Ferguson, E.E.,
Laboratory studies of negative ion reactions with atmospheric trace constituents,
J. Chem. Phys., 1974, 61, 3181. [all data]
Arshadi and Kebarle, 1970
Arshadi, M.; Kebarle, P.,
Hydration of OH- and O2- in the Gas Phase. Comparative Solvation of OH- by Water and the Hydrogen Halides. Effect of Acidity,
J. Phys. Chem., 1970, 74, 7, 1483, https://doi.org/10.1021/j100702a015
. [all data]
Kebarle, Arshadi, et al., 1968
Kebarle, P.; Arshadi, M.; Scarborough, J.,
Hydration of Negative Ions in the Gas Phase,
J. Chem. Phys., 1968, 49, 2, 817, https://doi.org/10.1063/1.1670145
. [all data]
Luong, Clements, et al., 2001
Luong, A.K.; Clements, T.G.; Resat, M.S.; Continetti, R.E.,
Energetics and dissociative photodetachment dynamics of superoxide-water clusters: O-2(-)(H2O)(n), n=1-6,
J. Chem. Phys., 2001, 114, 8, 3449-3455, https://doi.org/10.1063/1.1342221
. [all data]
Hiraoka, 1988, 2
Hiraoka, K.,
Determination of the Stabilities of O3-(N2)n, O3-(O2)n, and O4-(N2)n from Measurements of the Gas Phase Equilibria,
Chem. Phys., 1988, 125, 2-3, 439, https://doi.org/10.1016/0301-0104(88)87096-4
. [all data]
Hiraoka, Fujimaki, et al., 1994
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S.,
Gas-phase clustering reactions of O2(-), NO-, and O- with N2O: Isomeric structures for (NO-N2O)(-),
J. Phys. Chem., 1994, 98, 34, 8295, https://doi.org/10.1021/j100085a006
. [all data]
Yamdagni, Payzant, et al., 1973
Yamdagni, R.; Payzant, J.D.; Kebarle, P.,
Solvation of Cl- and O2- with H2O, CH3OH, and CH3CN in the gas phase,
Can. J. Chem., 1973, 51, 2507. [all data]
Posey and Johnson, 1988
Posey, L.A.; Johnson, M.A.,
Pulsed Photoelectron Spectroscopy of Negative Cluster Ions: Isolation of Three Distinguishable Forms of N2O2-,
J. Chem. Phys., 1988, 88, 9, 5385, https://doi.org/10.1063/1.454576
. [all data]
Ervin, Anusiewicz, et al., 2003
Ervin, K.M.; Anusiewicz, W.; Skurski, P.; Simons, J.; Lineberger, W.C.,
The only stable state of O-2(-) is the X (2)Pi(g) ground state and it (still!) has an adiabatic electron detachment energy of,
J. Phys. Chem. A, 2003, 107, 41, 8521-8529, https://doi.org/10.1021/jp0357323
. [all data]
Travers, Cowles, et al., 1989
Travers, M.J.; Cowles, D.C.; Ellison, G.B.,
Reinvestigation of the Electron Affinities of O2 and NO,
Chem. Phys. Lett., 1989, 164, 5, 449, https://doi.org/10.1016/0009-2614(89)85237-6
. [all data]
Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H.,
Microsolvation of small anions by aromatic molecules: An exploratory study,
J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750
. [all data]
Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G.,
Photodetachment Spectroscopy of Negative Cluster Ions,
in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]
Sanche and Schulz, 1972
Sanche, L.; Schulz, G.J.,
Electron transmission spectroscopy: core-excited resonances in diatomic molecules,
Phys. Rev. A: Gen. Phys., 1972, 6, 69. [all data]
Schulz, 1973
Schulz, G.J.,
Resonances in electron impact on diatomic molecules,
Rev. Mod. Phys., 1973, 45, 423. [all data]
Krauss, Neumann, et al., 1973
Krauss, M.; Neumann, D.; Wahl, A.C.; Das, G.; Zemke, W.,
Excited electronic states of O2,
Phys. Rev. A: Gen. Phys., 1973, 7, 69. [all data]
Rolfe, 1964
Rolfe, J.,
Low-temperature emission spectrum of O2- in alkali halides,
J. Chem. Phys., 1964, 40, 1664. [all data]
Ikezawa and Rolfe, 1973
Ikezawa, M.; Rolfe, J.,
Zero-phonon transitions in O2-, S2-, and Se2-, and SeS- molecules dissolved in alkali halide crystals,
J. Chem. Phys., 1973, 58, 2024. [all data]
Cosby, Ling, et al., 1976
Cosby, P.C.; Ling, J.H.; Peterson, J.R.; Moseley, J.T.,
Photodissociation and photodetachment of molecular negative ions. III. Ions formed in CO2.O2.H2O mixtures,
J. Chem. Phys., 1976, 65, 5267. [all data]
Creighton and Lippincott, 1964
Creighton, J.A.; Lippincott, E.R.,
Vibrational frequency and dissociation energy of the superoxide ion,
J. Chem. Phys., 1964, 40, 1779. [all data]
Holzer, Murphy, et al., 1968
Holzer, W.; Murphy, W.F.; Bernstein, H.J.; Rolfe, J.,
Raman spectrum of O2- ion in alkali halide crystals,
J. Mol. Spectrosc., 1968, 26, 543. [all data]
Kanzig and Cohen, 1959
Kanzig, W.; Cohen, M.H.,
Paramagnetic resonance of oxygen in alkali halides,
Phys. Rev. Lett., 1959, 3, 509. [all data]
Zeller and Kanzig, 1967
Zeller, H.R.; Kanzig, W.,
Die elekrtonische Struktur des O2--Zentrums in den Alkalihalogeniden. I. Die paramagnetischen und optischen Spektren und ihre Interpretation,
Helv. Phys. Acta, 1967, 40, 845. [all data]
Boness and Schulz, 1970
Boness, M.J.W.; Schulz, G.J.,
Structure of O2,
Phys. Rev. A: Gen. Phys., 1970, 2, 2182. [all data]
Linder and Schmidt, 1971
Linder, F.; Schmidt, H.,
Experimental study of low energy e - O2 collision processes,
Z. Naturforsch. A, 1971, 26, 1617. [all data]
Gray, Haselton, et al., 1972
Gray, R.L.; Haselton, H.H.; Krause, D., Jr.; Soltysik, E.A.,
Vibrational structure in electron scattering by O2,
Chem. Phys. Lett., 1972, 13, 51. [all data]
Celotta, Bennett, et al., 1972
Celotta, R.J.; Bennett, R.A.; Hall, J.L.; Siegel, M.W.; Levine, J.,
Molecular photodetachment spectrometry. II. The electron affinity of O2 and the structure of O2-,
Phys. Rev. A:, 1972, 6, 631. [all data]
Parlant and Fiquet-Fayard, 1976
Parlant, G.; Fiquet-Fayard, F.,
The O2- 2Πg resonance: theoretical analysis of electron scattering data,
J. Phys. B:, 1976, 9, 1617. [all data]
Pack and Phelps, 1966, 2
Pack, J.L.; Phelps, A.V.,
Electron Attachment and Detachment. I. Pure O2 at Low Energy,
J. Chem. Phys., 1966, 44, 5, 1870, https://doi.org/10.1063/1.1726956
. [all data]
Tiernan, Hughes, et al., 1971
Tiernan, T.O.; Hughes, B.M.; Lifschitz, C.,
Electron affinities from endothermic negative ion charge transfer reactions. II. O2,
J. Chem. Phys., 1971, 55, 5692. [all data]
Zemke, Das, et al., 1972
Zemke, W.T.; Das, G.; Wahl, A.C.,
Theoretical determination of the electron affinity of O2 molecule from the binding energy of O2-,
Chem. Phys. Lett., 1972, 14, 310. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.