n-Hexane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-167.1kJ/molN/AGood and Smith, 1969Value computed using ΔfHliquid° value of -198.7±0.7 kj/mol from Good and Smith, 1969 and ΔvapH° value of 31.6 kj/mol from Prosen and Rossini, 1945.; DRB
Δfgas-167.2 ± 0.79kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
gas388.82 ± 0.84J/mol*KN/AScott D.W., 1974This reference does not contain the original experimental data. Experimental entropy value is based on the results [ Messerly J.F., 1967] for S(liquid).; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
110.58200.Scott D.W., 1974, 2Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946] (see also [ Waddington G., 1949]).; GT
133.55273.15
142.6 ± 0.2298.15
143.26300.
181.54400.
217.28500.
248.11600.
274.05700.
296.23800.
315.06900.
331.371000.
345.181100.
357.311200.
368.191300.
376.561400.
389.111500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
156.27 ± 0.31333.85Waddington G., 1947GT
168.28 ± 0.34365.15
181.17 ± 0.36398.85
194.10 ± 0.39433.70
206.94 ± 0.41468.90

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-198.7 ± 0.67kJ/molCcbGood and Smith, 1969ALS
Δfliquid-198.8 ± 0.79kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcliquid-4163. ± 20.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
liquid296.06J/mol*KN/ADouslin and Huffman, 1946DH
liquid289.5J/mol*KN/AStull, 1937Extrapolation below 91 K, 54.68 J/mol*K.; DH
liquid295.4J/mol*KN/AHuffman, Parks, et al., 1931Extrapolation below 90 K, 64.02 J/mol*K.; DH
liquid297.5J/mol*KN/AParks, Huffman, et al., 1930Extrapolation below 90 K, 65.44 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
265.2298.15Pruzan, 1991DH
195.52298.15Ohnishi, Fujihara, et al., 1989DH
197.66298.15Andreoli-Ball, Patterson, et al., 1988DH
197.66298.15Perez-Casas, Aicart, et al., 1988DH
195.64298.15Saito and Tanaka, 1988DH
195.84298.15Benson and D'Arcy, 1986DH
203.0308.35Naziev, Bashirov, et al., 1986T = 308.35, 333.15. p = 0.1 MPa. Unsmoothed experimental datum given as 2.356 kJ/kg*K.; DH
197.66298.15Tardajos, Aicart, et al., 1986DH
194.96298.15Costas and Patterson, 1985T = 283.15, 298.15, 313.15 K.; DH
195.80298.15Benson, D'Arcy, et al., 1984DH
195.33298.15Bravo, Pintos, et al., 1984DH
196.1297.32Grigor'ev and Andolenko, 1984T = 293 to 324 K. Unsmoothed experimental datum given as 2.276 kJ/kg*K.; DH
195.80298.15Aicart, Kumaran, et al., 1983DH
195.80298.15Benson, D'Arcy, et al., 1983DH
195.33298.15Wilhelm, Inglese, et al., 1982DH
195.1298.Zaripov, 1982T = 298, 323 K.; DH
195.76298.15Grolier, Inglese, et al., 1981DH
195.64297.316Kalinowska, Jedlinska, et al., 1980T = 185 to 300 K. Unsmoothed experimental datum.; DH
184.2300.Czarnota, 1979DH
196.2298.Grigor'ev, Rastorguev, et al., 1975T = 300 to 463 K.; DH
198.5298.15Diaz pena and Renuncio, 1974T = 298 to 325 K.; DH
196.10299.8Connolly, Sage, et al., 1951T = 80 to 200°F.; DH
194.97298.15Douslin and Huffman, 1946T = 13 to 300 K.; DH
186.2300.7Phillip, 1939DH
189.1298.1Stull, 1937T = 90 to 320 K. Hump about 262 K with abnormal curve to 320 K.; DH
193.3293.5Huffman, Parks, et al., 1931T = 140 to 294 K. Value is unsmoothed experimental datum.; DH
191.6295.1Parks, Huffman, et al., 1930T = 90 to 295 K. Value is unsmoothed experimental datum.; DH
194.1298.von Reis, 1881T = 290 to 363 K.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 1-Hexene = n-Hexane

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-125. ± 3.kJ/molAVGN/AAverage of 8 values; Individual data points

2Hydrogen + 1,5-Hexadiene = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-252. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS
Δr-253.9 ± 2.7kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-251.8 ± 1.5kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-251.2 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -253.3 ± 0.63 kJ/mol; At 355 °K; ALS

Hydrogen + 2-Hexene, (E)- = n-Hexane

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-116.1 ± 0.45kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-481.2 ± 3.5kJ/molChydRogers and Crooks, 1983liquid phase; solvent: Hexane; ALS
Δr-111.3 ± 1.1kJ/molChydRogers, Papadimetriou, et al., 1975liquid phase; solvent: Hexane; ALS

Hydrogen + 3-Hexene, (Z)- = n-Hexane

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-121.6 ± 0.32kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-119.3 ± 1.2kJ/molChydRogers, Papadimetriou, et al., 1975liquid phase; solvent: Hexane; ALS
Δr-119.5 ± 1.2kJ/molChydRogers and Siddiqui, 1975liquid phase; solvent: n-Hexane; ALS

3-Hexene, (E)- + Hydrogen = n-Hexane

By formula: C6H12 + H2 = C6H14

Quantity Value Units Method Reference Comment
Δr-117.9 ± 0.73kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-117.9 ± 0.82kJ/molChydRogers and Crooks, 1983liquid phase; solvent: Hexane; ALS
Δr-109.8 ± 1.7kJ/molChydRogers, Papadimetriou, et al., 1975liquid phase; solvent: Hexane; ALS

Hydrogen + 2-Hexene, (Z)- = n-Hexane

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-119.5 ± 0.69kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-119.0 ± 0.78kJ/molChydRogers and Crooks, 1983liquid phase; solvent: Hexane; ALS
Δr-113.2 ± 0.92kJ/molChydRogers, Papadimetriou, et al., 1975liquid phase; solvent: Hexane; ALS

3Hydrogen + 1,3,5-Hexatriene, (Z)- = n-Hexane

By formula: 3H2 + C6H8 = C6H14

Quantity Value Units Method Reference Comment
Δr-339. ± 3.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS
Δr-336.8 ± 1.4kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS

3Hydrogen + 1,3,5-Hexatriene, (E)- = n-Hexane

By formula: 3H2 + C6H8 = C6H14

Quantity Value Units Method Reference Comment
Δr-335. ± 3.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS
Δr-332.3 ± 0.92kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS

4Hydrogen + 1,5-Hexadiyne = n-Hexane

By formula: 4H2 + C6H6 = C6H14

Quantity Value Units Method Reference Comment
Δr-582.8 ± 4.2kJ/molChydSkinner and Snelson, 1959liquid phase; solvent: Acetic acid; Reanalyzed by Cox and Pilcher, 1970, Original value = -583.2 ± 4.2 kJ/mol; ALS

2Hydrogen + cis-1,3-hexadiene = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-226. ± 1.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS

2Hydrogen + (E)-1,3-Hexadiene = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-221. ± 1.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS

2Hydrogen + (Z),(Z)-2,4-Hexadiene = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-219. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS

2Hydrogen + 1,4-Hexadiene, (Z)- = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-244. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS

2Hydrogen + trans-1,4-Hexadiene = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-241. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS

2Hydrogen + 2,4-Hexadiene, (E,Z)- = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-215. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS

2Hydrogen + 2,4-Hexadiene, (E,E)- = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-211. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS

2Hydrogen + trans-1-propenyl-cyclopropane = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-264. ± 0.8kJ/molChydRoth, Kirmse, et al., 1982liquid phase; solvent: Isooctane; ALS

4Hydrogen + (Z)-3,5-Hexadien-1-yne = n-Hexane

By formula: 4H2 + C6H6 = C6H14

Quantity Value Units Method Reference Comment
Δr-522. ± 2.kJ/molChydRoth, Hopf, et al., 1994liquid phase; solvent: Isooctane; ALS

C5O5W (g) + n-Hexane (g) = C11H14O5W (g)

By formula: C5O5W (g) + C6H14 (g) = C11H14O5W (g)

Quantity Value Units Method Reference Comment
Δr-45. ± 13.kJ/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS

2Hydrogen + 1-Hexyne = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-289.4 ± 0.46kJ/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

2Hydrogen + 3-Hexyne = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-272.4 ± 1.2kJ/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

2Hydrogen + 2-Hexyne = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-275. ± 2.kJ/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

n-Hexane = Pentane, 2-methyl-

By formula: C6H14 = C6H14

Quantity Value Units Method Reference Comment
Δr-5.44 ± 0.88kJ/molCisoProsen and Rossini, 1941liquid phase; Calculated from ΔHc; ALS

n-Hexane = Pentane, 3-methyl-

By formula: C6H14 = C6H14

Quantity Value Units Method Reference Comment
Δr-3.2 ± 0.79kJ/molCisoProsen and Rossini, 1941liquid phase; Calculated from ΔHc; ALS

n-Hexane = Butane, 2,3-dimethyl-

By formula: C6H14 = C6H14

Quantity Value Units Method Reference Comment
Δr-8.20 ± 0.84kJ/molCisoProsen and Rossini, 1941liquid phase; Calculated from ΔHc; ALS

n-Hexane = Butane, 2,2-dimethyl-

By formula: C6H14 = C6H14

Quantity Value Units Method Reference Comment
Δr-14.6 ± 0.75kJ/molCisoProsen and Rossini, 1941liquid phase; Calculated from ΔHc; ALS

5Hydrogen + (E)-Hexa-1,5-diyne-3-ene = n-Hexane

By formula: 5H2 + C6H4 = C6H14

Quantity Value Units Method Reference Comment
Δr-705. ± 2.kJ/molChydRoth, Adamczak, et al., 1991liquid phase; ALS

5Hydrogen + (Z)-Hexa-1,5-diyne-3-ene = n-Hexane

By formula: 5H2 + C6H4 = C6H14

Quantity Value Units Method Reference Comment
Δr-709. ± 2.kJ/molChydRoth, Adamczak, et al., 1991liquid phase; ALS

3Hydrogen + C6H8 = n-Hexane

By formula: 3H2 + C6H8 = C6H14

Quantity Value Units Method Reference Comment
Δr-432. ± 1.kJ/molChydRoth, Adamczak, et al., 1991liquid phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 19379

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good and Smith, 1969
Good, W.D.; Smith, N.K., Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data, 1969, 14, 102-106. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Scott D.W., 1974
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Messerly J.F., 1967
Messerly J.F., Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5-C18, J. Chem. Eng. Data, 1967, 12, 338-346. [all data]

Scott D.W., 1974, 2
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Waddington G., 1949
Waddington G., Experimental vapor heat capacities and heats of vaporization of 2-methylpentane, 3-methylpentane, and 2,3-dimethylbutane, J. Am. Chem. Soc., 1949, 71, 3902-3906. [all data]

Waddington G., 1947
Waddington G., Experimental vapor heat capacities and heats of vaporization of n-hexane and 2,2-dimethylbutane, J. Am. Chem. Soc., 1947, 69, 2275-2279. [all data]

Douslin and Huffman, 1946
Douslin, D.R.; Huffman, H.M., Low-temperature thermal data on the five isometric hexanes, J. Am. Chem. Soc., 1946, 68, 1704-1708. [all data]

Stull, 1937
Stull, D.R., A semi-micro calorimeter for measuring heat capacities at low temperatures, J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B., Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]

Pruzan, 1991
Pruzan, P., Thermophysical properties of liquid n-hexane at temperatures from 243 K to 473 K and at pressures to 500 MPa, J. Chem. Thermodynam., 1991, 23, 247-259. [all data]

Ohnishi, Fujihara, et al., 1989
Ohnishi, K.; Fujihara, I.; Murakami, S., Thermodynamic properties of decalins mixed with hexane isomers at 298.15K. 1. Excess enthalpies and excess isobaric heat capacities, Fluid Phase Equilib., 1989, 46, 59-72. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Perez-Casas, Aicart, et al., 1988
Perez-Casas, S.; Aicart, E.; Trojo, L.M.; Costas, M., Excess heat capacity. Chlorobenzene-2,2,4,4,6,8,8-heptamethylnonane, Int. Data Ser., Sel. Data Mixtures, 1988, (2)A, 123. [all data]

Saito and Tanaka, 1988
Saito, A.; Tanaka, R., Excess volumes and heat capacities of binary mixtures formed from cyclohexane, hexane and heptane at 298.15 K, J. Chem. Thermodynam., 1988, 20, 859-865. [all data]

Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J., Heat capacities of binary mixtures of n-octane with each of the hexane isomers at 298.15 K, Can. J. Chem., 1986, 64, 2139-2141. [all data]

Naziev, Bashirov, et al., 1986
Naziev, Ya.M.; Bashirov, M.M.; Badalov, Yu.A., Experimental study of isobaric specific heat of higher alcohols at high pressures, Inzh.-Fiz. Zhur., 1986, 51, 998-1004. [all data]

Tardajos, Aicart, et al., 1986
Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D., Liquid structure and second-order mixing functions for benzene, toluene, and p-xylene with n-alkanes, J. Chem. Soc., Faraday Trans., 1986, 1 82, 2977-2987. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Benson, D'Arcy, et al., 1984
Benson, G.C.; D'Arcy, P.J.; Kumaran, M.K., Heat capacities of binary mixtures of n-heptane with hexane isomers, Thermochim. Acta, 1984, 75, 353-360. [all data]

Bravo, Pintos, et al., 1984
Bravo, R.; Pintos, M.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Excess volumes excess heat capacities of some mixtures: (an isomer of hexanol + an n-alkane) at 298.15 K, J. Chem. Thermodynam., 1984, 16, 73-79. [all data]

Grigor'ev and Andolenko, 1984
Grigor'ev, B.A.; Andolenko, R.A., Investigation of the isobaric heat capacity of n-paraffinic hydrocarbons at atmospheric pressure, Izv. Vyssh. Ucheb. Zaved., Neft i Gaz, 1984, (2), 60-62. [all data]

Aicart, Kumaran, et al., 1983
Aicart, E.; Kumaran, M.K.; Halpin, C.J.; Benson, G.C., Ultrasonic speeds and isentropic compressibilities of 2-methylpentan-1-ol with hexane isomers at 298.15 K, J. Chem. Thermodynam., 1983, 15, 1189-1197. [all data]

Benson, D'Arcy, et al., 1983
Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E., Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K, Thermochim. Acta, 1983, 71, 161-166. [all data]

Wilhelm, Inglese, et al., 1982
Wilhelm, E.; Inglese, A.; Quint, J.R.; Grolier, J.-P.E., Molar excess volumes and excess heat capacities of (1,2,4-trichlorobenzene + an alkane), J. Chem. Thermodynam., 1982, 14, 303-308. [all data]

Zaripov, 1982
Zaripov, Z.I., Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]

Grolier, Inglese, et al., 1981
Grolier, J.P.E.; Inglese, A.; Roux, A.H.; Wilhelm, E., Thermodynamics of (1-chloronaphthalene + n-alkane): excess enthalpies, excess volumes and excess heat capacities, Ber. Bunsenges. Phys. Chem., 1981, 85, 768-772. [all data]

Kalinowska, Jedlinska, et al., 1980
Kalinowska, B.; Jedlinska, J.; Woycicki, W.; Stecki, J., Heat capacities of liquids at temperatures between 90 and 300 K and at atmospheric pressure. I. Method and apparatus, and the heat capacities of n-heptane, n-hexane, and n-propanol, J. Chem. Thermodynam., 1980, 12, 891-896. [all data]

Czarnota, 1979
Czarnota, I., Calorimetric system for measurement of specific heat capacity of liquids, Cp, at high pressures, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1979, 10, 763-772. [all data]

Grigor'ev, Rastorguev, et al., 1975
Grigor'ev, B.A.; Rastorguev, Yu.L.; Yanin, G.S., Experimental determination of the isobaric specific heat of n-alkanes, Iz. Vyssh. Uchebn. Zaved. Neft Gaz 18, 1975, No.10, 63-66. [all data]

Diaz pena and Renuncio, 1974
Diaz pena, M.D.; Renuncio, J.A.R., Construccion de un calorimetro adiabatico. Capacidad calorifica de mezclas n-hexano + n-hexadecano, An. Quim., 1974, 70, 113-120. [all data]

Connolly, Sage, et al., 1951
Connolly, T.J.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point. n-Hexane, methylcyclopentane, and n-octane, Ind. Eng. Chem., 1951, 43, 946-950. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Fang and Rogers, 1992
Fang, W.; Rogers, D.W., Enthalpy of hydrogenation of the hexadienes and cis- and trans-1,3,5-hexatriene, J. Org. Chem., 1992, 57, 2294-2297. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G., Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes, J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Rogers and Crooks, 1983
Rogers, D.W.; Crooks, E.L., Enthalpies of hydrogenation of the isomers of n-hexene, J. Chem. Thermodyn., 1983, 15, 1087-1092. [all data]

Rogers, Papadimetriou, et al., 1975
Rogers, D.W.; Papadimetriou, P.M.; Siddiqui, N.A., An improved hydrogen microcalorimeter for use with large molecules, Mikrochim. Acta, 1975, 2, 389-400. [all data]

Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A., Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids, J. Phys. Chem., 1975, 79, 574-577. [all data]

Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A., Heats of hydrogenation Part 3., Trans. Faraday Soc., 1959, 55, 405-407. [all data]

Roth, Kirmse, et al., 1982
Roth, W.R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.W., Heats of hydrogenation. III. Effect of fluoro substituents on the thermal rearrangement of cyclopropane systems, Chem. Ber., 1982, 115, 2508-2515. [all data]

Roth, Hopf, et al., 1994
Roth, W.R.; Hopf, H.; Horn, C., Propargyl-Stabilisierungsenergie, Chem. Ber., 1994, 127, 1781-1795. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L., Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation, J. Am. Chem. Soc., 1979, 101, 671-676. [all data]

Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D., Heats of isomerization of the five hexanes, J. Res. NBS, 1941, 27, 289-310. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References