Ethyl formate

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-86.45kcal/molN/AFrolova and Petrov, 1991Value computed using ΔfHliquid° value of -394.2±0.8 kj/mol from Frolova and Petrov, 1991 and ΔvapH° value of 32.5 kj/mol from Hine and Klueppet, 1974.; DRB
Δfgas-95.2kcal/molCmHine and Klueppet, 1974ALS

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-94.2 ± 0.2kcal/molEqkFrolova and Petrov, 1991ALS
Δfliquid-102.9kcal/molCmHine and Klueppet, 1974ALS

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
34.49298.15Fuchs, 1979DH
37.81290.Kurnakov and Voskresenskaya, 1936DH
35.40294.7Kolosovskii and Udovenko, 1934DH
35.40294.7de Kolossowsky and Udowenko, 1933DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H7O2+ + Ethyl formate = (C3H7O2+ • Ethyl formate)

By formula: C3H7O2+ + C3H6O2 = (C3H7O2+ • C3H6O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr30.0kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr30.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr20.8kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H9O2+ + Ethyl formate = (C4H9O2+ • Ethyl formate)

By formula: C4H9O2+ + C3H6O2 = (C4H9O2+ • C3H6O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr30.5kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr29.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr21.6kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

thiophenoxide anion + Ethyl formate = (thiophenoxide anion • Ethyl formate)

By formula: C6H5S- + C3H6O2 = (C6H5S- • C3H6O2)

Quantity Value Units Method Reference Comment
Δr20.0kcal/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr25.6cal/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

Iodide + Ethyl formate = (Iodide • Ethyl formate)

By formula: I- + C3H6O2 = (I- • C3H6O2)

Quantity Value Units Method Reference Comment
Δr16.6kcal/molPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M

N-Formylimidazole diethyl acetal + Water = Ethyl formate + 1H-Imidazole + Ethanol

By formula: C8H14N2O2 + H2O = C3H6O2 + C3H4N2 + C2H6O

Quantity Value Units Method Reference Comment
Δr-8.28 ± 0.42kcal/molCmGuthrie and Pike, 1987liquid phase; Heat of hydrolysis; ALS

Ethyl orthoformate + Water = Ethyl formate + 2Ethanol

By formula: C7H16O3 + H2O = C3H6O2 + 2C2H6O

Quantity Value Units Method Reference Comment
Δr-3.17 ± 0.19kcal/molCmHine and Klueppet, 1974liquid phase; Heat of hydrolysis; ALS

Ethane, 1,1,1-trimethoxy- + Water = Ethyl formate + 2Methyl Alcohol

By formula: C5H12O3 + H2O = C3H6O2 + 2CH4O

Quantity Value Units Method Reference Comment
Δr-6.29 ± 0.65kcal/molCmHine and Klueppet, 1974liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.14 QN/ASeveral references are given in the list of Henry's law constants but not assigned to specific species.
3.6 VN/A 
0.204300.MN/A 

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Frolova and Petrov, 1991
Frolova, E.I.; Petrov, A.A., Chemical equilibrium in the system formic acid-ethanol-ethyl formate-water, J. Appl. Chem. USSR, 1991, 64, 2361-2365. [all data]

Hine and Klueppet, 1974
Hine, J.; Klueppet, A.W., Structural effects on rates and equilibria. XVIII. Thermodynamic stability of ortho esters, J. Am. Chem. Soc., 1974, 96, 2924-2929. [all data]

Fuchs, 1979
Fuchs, R., Heat capacities of some liquid aliphatic, alicyclic, and aromatic esters at 298.15 K, J. Chem. Thermodyn., 1979, 11, 959-961. [all data]

Kurnakov and Voskresenskaya, 1936
Kurnakov, N.S.; Voskresenskaya, N.K., Calorimetry of liquid binary systems, Izv. Akad. Nauk SSSR, Otdel. Mat. i Estestv. Nauk. Ser. Khim, 1936, 1936, 439-461. [all data]

Kolosovskii and Udovenko, 1934
Kolosovskii, N.A.; Udovenko, W.W., Specific heat of liquids. II., Zhur. Obshchei Khim., 1934, 4, 1027-1033. [all data]

de Kolossowsky and Udowenko, 1933
de Kolossowsky, N.A.; Udowenko, W.W., Mesure des chaleurs specifique moleculaires de quelques liquides, Compt. rend., 1933, 197, 519-520. [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Guthrie and Pike, 1987
Guthrie, J.P.; Pike, D.C., Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazole on esters. The question of concerted mechanisms for acyl transfers, Can. J. Chem., 1987, 65, 1951-1969. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References