Butane, 1-bromo-
- Formula: C4H9Br
- Molecular weight: 137.018
- IUPAC Standard InChIKey: MPPPKRYCTPRNTB-UHFFFAOYSA-N
- CAS Registry Number: 109-65-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Butyl bromide; Butyl bromide; 1-Bromobutane; n-C4H9Br; UN 1126
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -25.7 ± 0.4 | kcal/mol | Ccr | Bjellerup, 1961 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -35.4 | kcal/mol | Cm | Holm, 1973 | Grignard Rx; ALS |
ΔfH°liquid | -34.36 ± 0.31 | kcal/mol | Ccr | Bjellerup, 1961 | Reanalyzed by Cox and Pilcher, 1970, Original value = -34.47 ± 0.31 kcal/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -649.26 ± 0.30 | kcal/mol | Ccr | Bjellerup, 1961 | Reanalyzed by Cox and Pilcher, 1970, Original value = -649.17 ± 0.30 kcal/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 78.160 | cal/mol*K | N/A | Deese, 1931 | Extrapolation below 100 K, 42.84 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
38.77 | 298.15 | Shehatta, 1993 | DH |
36.09 | 298. | Kurbatov, 1948 | T = 13 to 100°C, mean Cp, two temperatures.; DH |
36.379 | 292.3 | Deese, 1931 | T = 94 to 293 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 374. ± 2. | K | AVG | N/A | Average of 15 out of 16 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 385.4 | K | N/A | Buckingham and Donaghy, 1982 | BS |
Tfus | 160.7 | K | N/A | Timmermans, 1935 | Uncertainty assigned by TRC = 1.5 K; TRC |
Tfus | 160.8 | K | N/A | Timmermans, 1934 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tfus | 160.4 | K | N/A | Deese, 1931, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Tfus | 160.75 | K | N/A | Timmermans, 1921 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 577.5 | K | N/A | Majer and Svoboda, 1985 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 8.74 ± 0.06 | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
7.770 | 374.7 | N/A | Majer and Svoboda, 1985 | |
8.27 | 353. | A,EB | Stephenson and Malanowski, 1987 | Based on data from 338. to 373. K. See also Svoboda, Majer, et al., 1977.; AC |
8.96 | 288. | A,EST | Stephenson and Malanowski, 1987 | Based on data from 273. to 400. K. See also Li and Rossini, 1961 and Dykyj, 1971.; AC |
8.51 ± 0.02 | 322. | C | Svoboda, Majer, et al., 1977 | AC |
8.34 ± 0.02 | 332. | C | Svoboda, Majer, et al., 1977 | AC |
8.25 ± 0.02 | 339. | C | Svoboda, Majer, et al., 1977 | AC |
8.05 ± 0.02 | 352. | C | Svoboda, Majer, et al., 1977 | AC |
7.89 ± 0.02 | 366. | C | Svoboda, Majer, et al., 1977 | AC |
7.78 | 372.4 | V | Mathews and Fehlandt, 1931 | ALS |
8.01 | 308. | N/A | Smyth and Engel, 1929 | Based on data from 293. to 343. K. See also Boublik, Fried, et al., 1984.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 366. | 12.16 | 0.2641 | 577.5 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
195.18 to 295.82 | 3.45456 | 1105.883 | -65.203 | Milazzo, 1956 | Coefficents calculated by NIST from author's data. |
293. to 343. | 3.79436 | 1084.887 | -65.244 | Smyth and Engel, 1929 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.21 | 160.4 | Domalski and Hearing, 1996 | AC |
2.207 | 160.4 | Deese, 1931 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
13.76 | 160.4 | Domalski and Hearing, 1996 | CAL |
13.76 | 160.4 | Deese, 1931 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Na+ + C4H9Br = (Na+ • C4H9Br)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
12.2 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: C4H9Br = C4H9Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.4 | kcal/mol | Eqk | Alenin, Rozhnov, et al., 1974 | liquid phase; Heat of isomerization; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.047 | M | N/A | ||
0.082 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.082 | V | N/A |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Bjellerup, 1961
Bjellerup, L.,
Heats of combustion and formation of the 1-bromoalkanes from C4 through C8,
Acta Chem. Scand., 1961, 15, 231-241. [all data]
Holm, 1973
Holm, T.,
Thermochemistry of Grignard reagents. Enthalpies of formation of alkylmagnesium bromides and of alkyl bromides,
J. Organomet. Chem., 1973, 56, 87-93. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Deese, 1931
Deese, R.F., Jr.,
Thermal energy studies. IV. Comparison of continuous and discontinuous methods of measuring heat capacities. Heat capacities of some alphatic bromides,
J. Am. Chem. Soc., 1931, 53, 3673-3683. [all data]
Shehatta, 1993
Shehatta, I.,
Heat capacity at constant pressure of some halogen compounds,
Thermochim. Acta, 1993, 213, 1-10. [all data]
Kurbatov, 1948
Kurbatov, V.Ya.,
Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons,
Zh. Obshch. Kim., 1948, 18, 372-389. [all data]
Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M.,
Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]
Timmermans, 1935
Timmermans, J.,
Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds.,
Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]
Timmermans, 1934
Timmermans, J.,
Theory of Concentrated Solutions XII.,
Bull. Soc. Chim. Belg., 1934, 43, 626. [all data]
Deese, 1931, 2
Deese, R.F.,
Thermal energy studies: IV comparison of continuous and discontinuous methods of measuring heat capacities heat capacities of some aliphatic bromides,
J. Am. Chem. Soc., 1931, 53, 3673. [all data]
Timmermans, 1921
Timmermans, J.,
The Freezing Points of Organic Substances IV. New Exp. Determinations,
Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Svoboda, Majer, et al., 1977
Svoboda, V.; Majer, V.; Veselý, F.; Pick, J.,
Heats of vaporization of alkyl bromides,
Collect. Czech. Chem. Commun., 1977, 42, 6, 1755-1760, https://doi.org/10.1135/cccc19771755
. [all data]
Li and Rossini, 1961
Li, J.C.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of the l-Fluoroalkanes, l-Chloroalkanes, l-Bromoalkanes, and l-Iodoalkanes, C 1 to C 20 .,
J. Chem. Eng. Data, 1961, 6, 2, 268-270, https://doi.org/10.1021/je60010a025
. [all data]
Dykyj, 1971
Dykyj, J.,
Petrochemia, 1971, 11, 2, 27. [all data]
Mathews and Fehlandt, 1931
Mathews, J.H.; Fehlandt, P.R.,
The heats of vaporization of some organic compounds,
J. Am. Chem. Soc., 1931, 53, 3212-32. [all data]
Smyth and Engel, 1929
Smyth, C.P.; Engel, E.W.,
MOLECULAR ORIENTATION AND THE PARTIAL VAPOR PRESSURES OF BINARY MIXTURES. I. SYSTEMS COMPOSED OF NORMAL LIQUIDS,
J. Am. Chem. Soc., 1929, 51, 9, 2646-2660, https://doi.org/10.1021/ja01384a006
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Milazzo, 1956
Milazzo, G.,
Tensioni di Vapore di Alcune Sostanze Organiche a Bassa Temperatura,
Ann. Chim. (Rome), 1956, 46, 1105-1111. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Alenin, Rozhnov, et al., 1974
Alenin, V.I.; Rozhnov, A.M.; Nesterova, T.N.; Strizhkov, V.N.,
Equilibrium in the isomerisation of liquid C3-C4 monobromoalkanes,
Russ. J. Phys. Chem. (Engl. Transl.), 1974, 48, 1702. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.