Toluene
- Formula: C7H8
- Molecular weight: 92.1384
- IUPAC Standard InChIKey: YXFVVABEGXRONW-UHFFFAOYSA-N
- CAS Registry Number: 108-88-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Benzene, methyl; Methacide; Methylbenzene; Methylbenzol; Phenylmethane; Antisal 1a; Toluol; Methane, phenyl-; NCI-C07272; Tolueen; Toluen; Toluolo; Rcra waste number U220; Tolu-sol; UN 1294; Dracyl; Monomethyl benzene; CP 25; NSC 406333; methylbenzene (toluene)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Ion clustering data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Br- + C7H8 = (Br- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 7.5 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 0.4 ± 4.2 | kJ/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
0.4 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C3H9Si+ + C7H8 = (C3H9Si+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 119. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms pi complex; M |
ΔrH° | 131. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms pi complex; M |
ΔrH° | 111. | kJ/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 146. | J/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
43.1 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M |
By formula: C4H9+ + C7H8 = (C4H9+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 120. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrH° | 122. | kJ/mol | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 228. | J/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; toluene D8, forms protonated t-butyltoluene; M |
ΔrS° | 228. | J/mol*K | PHPMS | Stone and Stone, 1991 | gas phase; forms protomated t-butyltoluene; M |
By formula: C6H7N+ + C7H8 = (C6H7N+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57.3 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 109. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C7H8+ + C7H8 = (C7H8+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.7 | kJ/mol | MPI | Ernstberger, Krause, et al., 1990 | gas phase; M |
ΔrH° | 23. | kJ/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 66.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C9H12+ + C7H8 = (C9H12+ • C7H8)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: Cl- + C7H8 = (Cl- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 16.7 | kJ/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17. | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: Cr+ + C7H8 = (Cr+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 176. ± 14. | kJ/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: (Cr+ • C7H8) + C7H8 = (Cr+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 222. ± 38. | kJ/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: Cs+ + C7H8 = (Cs+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.0 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.5 ± 4.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: I- + C7H8 = (I- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 ± 4.2 | kJ/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: K+ + C7H8 = (K+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.9 ± 5.0 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C7H8) + C7H8 = (K+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.9 ± 4.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Li+ + C7H8 = (Li+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 183. ± 17. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 116. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: NO- + C7H8 = (NO- • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 185. | kJ/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: Na+ + C7H8 = (Na+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 112. ± 3. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C7H8) + C7H8 = (Na+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87. ± 2. | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C7H8 = (Rb+ • C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.1 ± 4.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C7H8) + C7H8 = (Rb+ • 2C7H8)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67.8 ± 4.2 | kJ/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
References
Go To: Top, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Stone and Stone, 1991
Stone, J.M.; Stone, J.A.,
A High Pressure Mass Spectrometric Study of the Binding of (CH3)3Si+ and (CH3)3C+ to Toluene and Benzene,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 247, https://doi.org/10.1016/0168-1176(91)85107-W
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J.,
Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer,
J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603
. [all data]
Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H.,
Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet,
Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C.,
Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives,
Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n
. [all data]
Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b
. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Notes
Go To: Top, Ion clustering data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.