Mesitylene
- Formula: C9H12
- Molecular weight: 120.1916
- IUPAC Standard InChIKey: AUHZEENZYGFFBQ-UHFFFAOYSA-N
- CAS Registry Number: 108-67-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene, 1,3,5-trimethyl-; s-Trimethylbenzene; 1,3,5-Trimethylbenzene; sym-Trimethylbenzene; Fleet-X; TMB; UN 2325; 2,4,6-Trimethylbenzene; 3,5-Dimethyltoluene; NSC 9273; Trimethylbenzene; Trimethylbenzol; 1,3,5-trimethylbenzene (mesitylene); Trimethylbenzene (Related); Trimethylbenzol (Related)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C3H9Si+ + C9H12 = (C3H9Si+ • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. | kJ/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 147. | J/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
61.1 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M |
By formula: C3H9Sn+ + C9H12 = (C3H9Sn+ • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 134. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 133. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
64.0 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C9H13+ + C9H12 = (C9H13+ • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
20. | 272. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
By formula: C11H10+ + C9H12 = (C11H10+ • C9H12)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.2 | kJ/mol | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 124. | J/mol*K | PHPMS | El-Shall and Meot-Ner (Mautner), 1987 | gas phase; M |
By formula: C6H7N+ + C9H12 = (C6H7N+ • C9H12)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.0 | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 107. | J/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: C9H12+ + C9H12 = (C9H12+ • C9H12)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.0 | kJ/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
By formula: C9H12 + 3H2 = C9H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -196.1 ± 0.84 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -199.2 ± 0.8 kJ/mol; At 355 °K; ALS |
By formula: Cl- + C9H12 = (Cl- • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 18.8 | kJ/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19. | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: H4N+ + C9H12 = (H4N+ • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 91.2 | kJ/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.7 | J/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: 2C9H12 + 6H2 = C9H18 + C9H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -198. ± 2. | kJ/mol | Eqk | Egan and Buss, 1959 | gas phase; At 480-571 K; ALS |
By formula: (Cr+ • C9H12) + C9H12 = (Cr+ • 2C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 212. ± 38. | kJ/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: Cr+ + C9H12 = (Cr+ • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 193. ± 29. | kJ/mol | RAK | Lin and Dunbar, 1997 | RCD |
By formula: Ca+ + C9H12 = (Ca+ • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 135. | kJ/mol | RAK | Gapeev and Dunbar, 2000 | RCD |
By formula: Sr+ + C9H12 = (Sr+ • C9H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 116. | kJ/mol | RAK | Gapeev and Dunbar, 2000 | RCD |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M.,
Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization,
J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012
. [all data]
El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M.,
Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors,
J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Egan and Buss, 1959
Egan, C.J.; Buss, W.C.,
Determination of the equilibrium constants for the hydrogenation of mesitylene. The thermodynamic properties of the 1,3,5-trimethylcyclohexanes,
J. Phys. Chem., 1959, 63, 1887-1889. [all data]
Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C.,
Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives,
Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n
. [all data]
Gapeev and Dunbar, 2000
Gapeev, A.; Dunbar, R.C.,
Binding of Alkaline Earth Halide Ions MX+ to Benzene and Mesitylene,
J. Am. Soc. Mass Spectrom., 2000, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.