Propanedioic acid, dimethyl ester
- Formula: C5H8O4
- Molecular weight: 132.1146
- IUPAC Standard InChIKey: BEPAFCGSDWSTEL-UHFFFAOYSA-N
- CAS Registry Number: 108-59-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Malonic acid, dimethyl ester; Dimethyl malonate; Dimethyl propanedioate; Methyl malonate; Dimethyl ester of malonic acid; Propanedioic acid, 1,3-dimethyl ester
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -737.8 ± 1.0 | kJ/mol | Ccb | Verevkin, Beckhaus, et al., 1992 | |
ΔfH°gas | -737.8 ± 1.0 | kJ/mol | Ccb | Verevkin, Dogan, et al., 1990 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -799.69 ± 0.63 | kJ/mol | Ccb | Verevkin, Beckhaus, et al., 1992 | ALS |
ΔfH°liquid | -799.69 ± 0.63 | kJ/mol | Ccb | Verevkin, Dogan, et al., 1990 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -2311.2 ± 0.63 | kJ/mol | Ccb | Verevkin, Beckhaus, et al., 1992 | Corresponding ΔfHºliquid = -799.73 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -2311.2 ± 0.63 | kJ/mol | Ccb | Verevkin, Dogan, et al., 1990 | Corresponding ΔfHºliquid = -799.73 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -2318. | kJ/mol | Ccb | Verkade, Coops, et al., 1926 | Heat of combustion at 15°C; Corresponding ΔfHºsolid = -792.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
210.1 | 298.15 | Verevkin, Beckhaus, et al., 1992 | DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 454.6 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 454.6 | K | N/A | Lecat, 1947 | Uncertainty assigned by TRC = 0.8 K; TRC |
Tboil | 454.6 | K | N/A | Lecat, 1926 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 211.3 | K | N/A | Palomaa and Mikkila, 1942 | Uncertainty assigned by TRC = 1. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 57.5 ± 0.3 | kJ/mol | GS | Verevkin, Kozlova, et al., 2006 | Based on data from 278. to 314. K.; AC |
ΔvapH° | 61.84 ± 0.79 | kJ/mol | V | Verevkin, Beckhaus, et al., 1992 | ALS |
ΔvapH° | 61.84 ± 0.79 | kJ/mol | C | Verevkin, Dogan, et al., 1990 | ALS |
ΔvapH° | 61.9 | kJ/mol | N/A | Verevkin, Dogan, et al., 1990 | DRB |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 111.7 ± 2.1 | kJ/mol | ME | Ribeiro da Silva, Monte, et al., 2000 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
52.9 ± 0.2 | 360. | EB | Steele, Chirico, et al., 2002 | Based on data from 351. to 460. K.; AC |
49.5 ± 0.2 | 400. | EB | Steele, Chirico, et al., 2002 | Based on data from 351. to 460. K.; AC |
46.1 ± 0.3 | 440. | EB | Steele, Chirico, et al., 2002 | Based on data from 351. to 460. K.; AC |
61.8 ± 0.8 | 293. | GS | Verevkin, Beckhaus, et al., 1992 | Based on data from 278. to 308. K.; AC |
50.0 | 497. | EB,HG | Askonas and Daubert, 1988 | Based on data from 374. to 620. K.; AC |
53.7 | 323. | A | Stephenson and Malanowski, 1987 | Based on data from 308. to 454. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
308. to 453.9 | 5.22732 | 2143.666 | -43.448 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C5H7O4- + =
By formula: C5H7O4- + H+ = C5H8O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1456. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1428. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
De-protonation reactions
C5H7O4- + =
By formula: C5H7O4- + H+ = C5H8O4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1456. ± 8.8 | kJ/mol | G+TS | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1428. ± 8.4 | kJ/mol | IMRE | Mishima, Matsuoka, et al., 2004 | gas phase; Calc: keto form of acid more stable. |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Verevkin, Beckhaus, et al., 1992
Verevkin, S.P.; Beckhaus, H.-D.; Ruchardt, C.,
Geminale substituenteneffekte Teil 5α. Standardbildungsenthalpien von alkylsubstituierten Malonsaure- und α-aminocarbonsaureestern,
Thermochim. Acta, 1992, 197, 27-39. [all data]
Verevkin, Dogan, et al., 1990
Verevkin, S.; Dogan, B.; Beckhaus, H.D.; Ruechardt, C.,
Geminal substituent effects. 3. Synergistic destablization by geminal ester groups,
Angew. Chem., 1990, 102, 693-695. [all data]
Verkade, Coops, et al., 1926
Verkade, P.E.; Coops, J.; Hartman, H.,
Calorimetric researches. XIII. Heats of combustion of successive terms of homologous series: Dimethyl esters of the oxalic acid series. A general survey of the oscillation phenomena,
Recl. Trav. Chim. Pays-Bas, 1926, 45, 585-606. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Lecat, 1947
Lecat, M.,
Orthobaric Azeotropes of Sulfides,
Bull. Cl. Sci., Acad. R. Belg., 1947, 33, 160-82. [all data]
Lecat, 1926
Lecat, M.,
New binary azeotropes: 3rd list,
Ann. Soc. Sci. Bruxelles, Ser. B, 1926, 45, 284-94. [all data]
Palomaa and Mikkila, 1942
Palomaa, M.H.; Mikkila, I.,
Etherlike Compounds XXVII Turbid Phases in Compounds with Reactivity Minimums,
Chem. Ber., 1942, 75B, 1659-67. [all data]
Verevkin, Kozlova, et al., 2006
Verevkin, Sergey P.; Kozlova, Svetlana A.; Emel'yanenko, Vladimir N.; Nikitin, Eugene D.; Popov, Alexander P.; Krasnykh, Eugen L.,
Vapor Pressures, Enthalpies of Vaporization, and Critical Parameters of a Series of Linear Aliphatic Dimethyl Esters of Dicarboxylic Acids,
J. Chem. Eng. Data, 2006, 51, 5, 1896-1905, https://doi.org/10.1021/je0602418
. [all data]
Ribeiro da Silva, Monte, et al., 2000
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Ribeiro, José R.,
Standard Enthalpies, Entropies, and Gibbs Functions of Sublimation of Four Alkyl-Substituted Malonic Acids,
J. Chem. Eng. Data, 2000, 45, 5, 756-759, https://doi.org/10.1021/je000090n
. [all data]
Steele, Chirico, et al., 2002
Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A.,
Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for 1,4-Diisopropylbenzene, 1,2,4,5-Tetraisopropylbenzene, Cyclohexanone Oxime, Dimethyl Malonate, Glutaric Acid, and Pimelic Acid,
J. Chem. Eng. Data, 2002, 47, 4, 725-739, https://doi.org/10.1021/je010088b
. [all data]
Askonas and Daubert, 1988
Askonas, Charles F.; Daubert, Thomas E.,
Vapor pressure determination of eight oxygenated compounds,
J. Chem. Eng. Data, 1988, 33, 3, 225-229, https://doi.org/10.1021/je00053a001
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Mishima, Matsuoka, et al., 2004
Mishima, M.; Matsuoka, M.; Lei, Y.X.; Rappoport, Z.,
Gas-phase acidities of disubstituted methanes and of enols of carboxamides substituted by electron-withdrawing groups,
J. Org. Chem., 2004, 69, 18, 5947-5965, https://doi.org/10.1021/jo040196b
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Tboil Boiling point Tfus Fusion (melting) point ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.