Pyridine, 2,4-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas15.3kcal/molN/ACox and Gundry, 1958Value computed using ΔfHliquid° value of 16.1 kj/mol from Cox and Gundry, 1958 and ΔvapH° value of 47.78 kj/mol from missing citation.

Phase change data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil431. ± 2.KAVGN/AAverage of 14 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus209.415KN/ASteele, Chirico, et al., 1986DH
Tfus205.2KN/AAssal, 1966Uncertainty assigned by TRC = 1. K; TRC
Tfus205.25KN/AKyte, Jeffery, et al., 1960Uncertainty assigned by TRC = 0.5 K; TRC
Tfus209.19KN/ACoulson, Cox, et al., 1959Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Ttriple209.35KN/AChirico, Hossenlopp, et al., 1994Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Tc647.KN/AMajer and Svoboda, 1985 
Tc647.15KN/AAmbrose and Grant, 1957Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Δvap11.35kcal/molN/AMajer and Svoboda, 1985 
Δvap11.4kcal/molCGCChickos, Hosseini, et al., 1995Based on data from 323. to 373. K.; AC
Δvap11.42kcal/molVCox, 1960ALS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
9.209431.6N/AMajer and Svoboda, 1985 
10.9330.N/ASakoguchi, Ueoka, et al., 1995Based on data from 288. to 373. K.; AC
10.7340.EBSteele, Chirico, et al., 1995Based on data from 331. to 473. K.; AC
10.1380.EBSteele, Chirico, et al., 1995Based on data from 331. to 473. K.; AC
9.51420.EBSteele, Chirico, et al., 1995Based on data from 331. to 473. K.; AC
8.84460.EBSteele, Chirico, et al., 1995Based on data from 331. to 473. K.; AC
11.3313.EBLencka, 1990Based on data from 298. to 431. K.; AC
10.4364.AStephenson and Malanowski, 1987Based on data from 349. to 433. K. See also Kkykj and Repas, 1973.; AC
11.4282.MMWisniewska, Lencka, et al., 1986Based on data from 267. to 358. K.; AC
11.1313.CMajer, Svoboda, et al., 1985AC
10.7343.CMajer, Svoboda, et al., 1985AC
10.5368.CMajer, Svoboda, et al., 1985AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
313. to 368.15.740.3033647.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
423.54 to 432.9712.5335113550.483649.591Coulson, Cox, et al., 1959, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.11209.4Chirico, Hossenlopp, et al., 1994, 2AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-2070
NIST MS number 227867

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedC78, Branched paraffin130.918.7Dallos, Sisak, et al., 2000He; Column length: 3.3 m
PackedC78, Branched paraffin130.919.5Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
CapillaryHP-160.911.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-160.912.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
PackedApolane130.922.Dutoit, 1991Column length: 3.7 m
CapillarySE-30110.917.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillarySE-3080.912.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillaryOV-101150.924.Morishita, Morimoto, et al., 1986N2; Column length: 20. m; Column diameter: 0.23 mm
PackedApiezon L130.945.Shatts, Avots, et al., 1977He, Chromosorb W AW-DMCS; Column length: 2.4 m
PackedApolane70.903.4Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedApiezon L100.932.Zhuravleva, Kapustin, et al., 1976N2 or He, Chromosorb G, AW; Column length: 2.7 m
PackedPMS-100130.928.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100150.918.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100180.916.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPEG-40M110.1340.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm
CapillaryPEG-40M80.1322.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm
CapillaryPEG-20M150.1387.Morishita, Morimoto, et al., 1986N2; Column length: 20. m; Column diameter: 0.23 mm
PackedPEG-2000150.1383.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.1378.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.1382.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.1382.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-1903.9Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
CapillaryOV-101917.Golovnya, Samusenko, et al., 1988He, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 100. C
CapillaryOV-101916.Golovnya, Samusenko, et al., 1988He, 8. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 70. C
CapillaryOV-101916.Golovnya, Samusenko, et al., 1988He, 4. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 80. C
CapillaryDB-5932.Premecz and Ford, 1987He, 60. C @ 10. min, 10. K/min, 280. C @ 3. min; Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-5925.Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPEG-40M1342.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 2. K/min; Tstart: 100. C
CapillaryPEG-40M1345.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 8. K/min; Tstart: 70. C
CapillaryPEG-40M1339.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 4. K/min; Tstart: 80. C
CapillaryCAM1325.Premecz and Ford, 1987He, 60. C @ 5. min, 5. K/min, 240. C @ 21. min; Column length: 15. m; Column diameter: 0.24 mm

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M1334.Baltes and Bochmann, 1987Column length: 50. m; Column diameter: 0.3 mm; Program: not specified

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS930.Radulovic, Dordevic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C
CapillaryHP-5941.3Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryHP-5945.Kubec, Drhová, et al., 199930. m/0.25 mm/0.25 μm, N2, 40. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryHP-5932.Kubec, Drhová, et al., 199830. m/0.25 mm/0.25 μm, N2, 40. C @ 3. min, 4. K/min, 240. C @ 10. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySE-30933.Li, Gao, et al., 2000Program: not specified
CapillaryMethyl Silicone920.Zenkevich, 1999Program: not specified
CapillaryDB-1908.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax1317.Kubec, Drhová, et al., 199930. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 4. K/min, 190. C @ 10. min
CapillaryHP-Innowax1324.Kubec, Drhová, et al., 199830. m/0.25 mm/0.25 μm, N2, 40. C @ 3. min, 4. K/min, 190. C @ 10. min
CapillaryDB-Wax1338.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax1333.Baltes and Bochmann, 1987, 2Program: not specified
CapillaryCarbowax1334.Baltes and Bochmann, 1987, 2Program: not specified
CapillaryCarbowax1334.Baltes and Bochmann, 1987, 2Program: not specified
CapillaryCarbowax1336.Baltes and Bochmann, 1987, 2Program: not specified
CapillaryCarbowax1336.Baltes and Bochmann, 1987, 2Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5145.96Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

References

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox and Gundry, 1958
Cox, J.D.; Gundry, H.A., Heats of combustion. Part II. The six lutidines, J. Chem. Soc., 1958, 1019-1022. [all data]

Steele, Chirico, et al., 1986
Steele, W.V.; Chirico, R.D.; Collier, W.B.; Hossenlopp, I.A.; Nguyen, A.; Strube, M.M., Thermochemical and thermophysical properties of organic nitrogen compounds found in fossil materials, NIPER Report, 1986, 188, 112p. [all data]

Assal, 1966
Assal, F.A., Vapour-liquid equilibria in phenol-pyridine base systems, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1966, 14, 603. [all data]

Kyte, Jeffery, et al., 1960
Kyte, C.T.; Jeffery, G.H.; Vogel, A.I., Physical Properties and Chem. Constitution XXVII. Pyridine Derivatives, J. Chem. Soc., 1960, 1960, 4454. [all data]

Coulson, Cox, et al., 1959
Coulson, E.A.; Cox, J.D.; Herington, E.F.G.; Martin, J.F., The Preparation and Physical Properties of the Pure Lutidines, J. Chem. Soc., 1959, 1959, 1934. [all data]

Chirico, Hossenlopp, et al., 1994
Chirico, R.D.; Hossenlopp, I.A.; Gammon, B.E.; Knipmeyer, S.E.; Steele, W.V., Heat capacities of the six dimethylpyridines between the temperatures 10 K and 445 K and methyl-group rotational barriers in the solid state a,b, J. Chem. Thermodyn., 1994, 26, 11, 1187, https://doi.org/10.1006/jcht.1994.1138 . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose and Grant, 1957
Ambrose, D.; Grant, D.G., The Critical Temperatures of Some Hydrocarbons and Pyridine Bases, Trans. Faraday Soc., 1957, 53, 771. [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Cox, 1960
Cox, J.D., The second virial coefficients, latent heats of vaporization and heats of formation of the lutidines, Trans. Faraday Soc., 1960, 56, 959. [all data]

Sakoguchi, Ueoka, et al., 1995
Sakoguchi, Akihiro; Ueoka, Ryuichi; Kato, Yasuo; Arai, Yasuhiko, Vapor Pressures of Alkylpyridines and Alkylpyrazines., KAGAKU KOGAKU RONBUNSHU, 1995, 21, 1, 219-223, https://doi.org/10.1252/kakoronbunshu.21.219 . [all data]

Steele, Chirico, et al., 1995
Steele, W.V.; Chirico, R.D.; Nguyen, A.; Knipmeyer, S.E., Vapor pressures, high-temperature heat capacities, critical properties, derived thermodynamic functions, and barriers to methyl-group rotation, for the six dimethylpyridines, The Journal of Chemical Thermodynamics, 1995, 27, 3, 311-334, https://doi.org/10.1006/jcht.1995.0030 . [all data]

Lencka, 1990
Lencka, Malgorzata, Measurements of the vapour pressures of pyridine, 2-methylpyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, and 2,4,6-trimethylpyridine from 0.1 kPa to atmospheric pressure using a modified Swietoslawski ebulliometer, The Journal of Chemical Thermodynamics, 1990, 22, 5, 473-480, https://doi.org/10.1016/0021-9614(90)90139-H . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Kkykj and Repas, 1973
Kkykj, J.; Repas, M., Petrochemia, 1973, 13, 179. [all data]

Wisniewska, Lencka, et al., 1986
Wisniewska, Barbara; Lencka, Malgorzata; Rogalski, Marek, Vapour pressures of 2,4-, 2,6-, and 3,5-dimethylpyridine at temperatures from 267 to 360 K, The Journal of Chemical Thermodynamics, 1986, 18, 8, 703-708, https://doi.org/10.1016/0021-9614(86)90102-3 . [all data]

Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of dimethylpyridines and trimethylpyridines, The Journal of Chemical Thermodynamics, 1985, 17, 4, 365-370, https://doi.org/10.1016/0021-9614(85)90133-8 . [all data]

Coulson, Cox, et al., 1959, 2
Coulson, E.A.; Cox, J.D.; Herington, E.F.G.; Martin, J.F., The Preparation and Physical Properties of the Pure Lutidines, J. Chem. Soc., 1959, 1934-1940, https://doi.org/10.1039/jr9590001934 . [all data]

Chirico, Hossenlopp, et al., 1994, 2
Chirico, R.D.; Hossenlopp, I.A.; Gammon, B.E.; Knipmeyer, S.E.; Steele, W.V., Heat capacities of the six dimethylpyridines between the temperatures 10 K and 445 K and methyl-group rotational barriers in the solid state a,b, The Journal of Chemical Thermodynamics, 1994, 26, 11, 1187-1218, https://doi.org/10.1006/jcht.1994.1138 . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Zhang, Li, et al., 1992
Zhang, M.J.; Li, S.D.; Chen, B.J., Compositional studies of high-temperature coal tar by GC/FTIR analysis of light oil fractions, Chromatographia, 1992, 33, 3/4, 138-146, https://doi.org/10.1007/BF02275894 . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Samusenko and Golovnya, 1988
Samusenko, A.L.; Golovnya, R.V., Prediction of the retention indices of methyl pyridines and pyrazines in capillary gas chromatography based on the non-linear additivity of the sorption energy, Chromatographia, 1988, 25, 6, 531-535, https://doi.org/10.1007/BF02324828 . [all data]

Morishita, Morimoto, et al., 1986
Morishita, F.; Morimoto, S.; Kojima, T., Prediction of molecular structures of aza-arenes by retention indices and fluorescence spectra, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 11, 688-692, https://doi.org/10.1002/jhrc.1240091120 . [all data]

Shatts, Avots, et al., 1977
Shatts, V.D.; Avots, A.A.; Belikov, V.A., Retention indices of alkylpyridines, Zh. Anal. Khim., 1977, 32, 4, 631-638. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Zhuravleva, Kapustin, et al., 1976
Zhuravleva, I.L.; Kapustin, Yu.P.; Golovnya, P.B., Retention indices of some isoaliphatic and heterocyclic nitrogenous bases, Zh. Anal. Khim., 1976, 31, 1378-1380. [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Golovnya, Samusenko, et al., 1987
Golovnya, R.V.; Samusenko, A.L.; Dmitriev, L.B., Predicting retention indices of methyl-substituted pyridines in gas capillary chromatogrpahy on the basis of the principle of the nonadditive change in the energy of sorption, Izv. Akad. Nauk SSSR Ser. Khim., 1987, 10, 2234-2239. [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Golovnya, Samusenko, et al., 1988
Golovnya, R.V.; Samusenko, A.L.; Lyapin, V.A., Prediction of linear temperature programmed retention indices of methylpyridines in capillary gas chromatography, Zh. Anal. Khim., 1988, 63, 2, 311-317. [all data]

Premecz and Ford, 1987
Premecz, J.E.; Ford, M.E., Gas chromatographic separation of substituted pyridines, J. Chromatogr., 1987, 388, 23-35, https://doi.org/10.1016/S0021-9673(01)94463-2 . [all data]

Rostad and Pereira, 1986
Rostad, C.E.; Pereira, W.E., Kovats and Lee retention indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 6, 328-334, https://doi.org/10.1002/jhrc.1240090603 . [all data]

Baltes and Bochmann, 1987
Baltes, W.; Bochmann, G., Model reactions on roast aroma formation. 1. Reaction of serine and threonine with sucrose under the conditions of coffee roasting and identification of new coffee aroma compounds, J. Agric. Food Chem., 1987, 35, 3, 340-346, https://doi.org/10.1021/jf00075a015 . [all data]

Radulovic, Dordevic, et al., 2010
Radulovic, N.; Dordevic, N.; Markovic, M.; Palic, R., Volatile constituents of Glechoma Hirsuta Waldst. Kit. and G. Hederacea L. (Lamiaceae), Bull. Chem. Soc. Ethiop., 2010, 24, 1, 67-76, https://doi.org/10.4314/bcse.v24i1.52962 . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

Kubec, Drhová, et al., 1999
Kubec, R.; Drhová, V.; Velísek, J., Volatile compounds thermally generated from S-propylcysteine and S-propylcysteine sulfoxide - aroma precursors of Allium vegetables, J. Agric. Food Chem., 1999, 47, 3, 1132-1138, https://doi.org/10.1021/jf980974z . [all data]

Kubec, Drhová, et al., 1998
Kubec, R.; Drhová, V.; Velísek, J., Thermal degradation of S-methylcysteine and its sulfoxide-important flavor precursors of Bassica and Allium vegetables, J. Agric. Food Chem., 1998, 46, 10, 4334-4340, https://doi.org/10.1021/jf980379x . [all data]

Li, Gao, et al., 2000
Li, R.; Gao, S.-G.; Xiang, B.-R., Using improved BP neural network in predicting GC retention indices, Computers appl. chem. (Chinese), 2000, 17, 1-2, 113-114. [all data]

Zenkevich, 1999
Zenkevich, I.G., Precalculation of Gas Chromatographic Retention Indices of Organic Compounds from Boiling Points of their Structural Analogues, Zh. Struct. Khim., 1999, 40, 1, 121-130. [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Baltes and Bochmann, 1987, 2
Baltes, W.; Bochmann, G., Model reactions on roast aroma formations, V. Mass spectrometric identification of pyrifines, oxazoles, and carbocyclic compounds from the reaction of serine and threonine with sucrose under the conditions of coffee roasting, Z. Lebensm. Unters. Forsch., 1987, 185, 1, 5-9, https://doi.org/10.1007/BF01083331 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References