Pentane, 2,4-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-48.30 ± 0.23kcal/molCcbProsen and Rossini, 1945ALS
Δfgas-49.02kcal/molN/ADavies and Gilbert, 1941Value computed using ΔfHliquid° value of -238.0±1.0 kj/mol from Davies and Gilbert, 1941 and ΔvapH° value of 32.9 kj/mol from Prosen and Rossini, 1945.; DRB
Quantity Value Units Method Reference Comment
gas94.821cal/mol*KN/AHuffman H.M., 1961GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
27.591200.Scott D.W., 1974Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a good agreement with experimental data available for alkanes. However, large uncertainties could be expected at high temperatures.; GT
37.660273.15
40.81 ± 0.1298.15
41.040300.
52.600400.
62.469500.
70.801600.
78.000700.
84.199800.
89.500900.
94.1991000.
98.3011100.
101.901200.
105.001300.
108.001400.
111.001500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-56.17 ± 0.23kcal/molCcbProsen and Rossini, 1945ALS
Δfliquid-57.0 ± 0.3kcal/molCcbDavies and Gilbert, 1941ALS
Quantity Value Units Method Reference Comment
Δcliquid-1148.73 ± 0.20kcal/molCcbProsen and Rossini, 1945Corresponding Δfliquid = -56.15 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1147.8 ± 0.3kcal/molCcbDavies and Gilbert, 1941Corresponding Δfliquid = -57.10 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid72.459cal/mol*KN/AHuffman, Gross, et al., 1961DH
liquid69.69cal/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 65.90 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
53.590298.15Huffman, Gross, et al., 1961T = 10 to 300 K.; DH
52.80294.4Huffman, Parks, et al., 1930T = 92 to 294 K. Value is unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 1-Pentene, 2,4-dimethyl- = Pentane, 2,4-dimethyl-

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-27.39 ± 0.29kcal/molChydRogers and Dejroongruang, 1989liquid phase; solvent: Cyclohexane
Δr-26.7kcal/molChydTurner, Nettleton, et al., 1958liquid phase; solvent: Acetic acid

Hydrogen + 2-Pentene, 2,4-dimethyl- = Pentane, 2,4-dimethyl-

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-26.15 ± 0.29kcal/molChydRogers and Dejroongruang, 1989liquid phase; solvent: Cyclohexane
Δr-25.2kcal/molChydTurner, Nettleton, et al., 1958liquid phase; solvent: Acetic acid

Heptane = Pentane, 2,4-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-2.54 ± 0.16kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization
Δr-3.40 ± 0.22kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00034 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00034 LN/A 
0.00032 VN/A 

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C., Heats of combustion and formation of the nine isomeric heptanes in the liquid state, J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]

Huffman H.M., 1961
Huffman H.M., Low temperature thermodynamic properties of six isomeric heptanes, J. Phys. Chem., 1961, 65, 495-503. [all data]

Scott D.W., 1974
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Scott D.W., 1974, 2
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Huffman, Gross, et al., 1961
Huffman, H.M.; Gross, M.E.; Scott, D.W.; McCullough, I.P., Low temperature thermodynamic properties of six isomeric heptanes, J. Phys. Chem., 1961, 65, 495-503. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Thomas, S.B., Thermal data on organic compounds. VIII. The heat capacities, entropies and free energies of the isomeric heptanes, J. Am. Chem. Soc., 1930, 52, 3241-3251. [all data]

Rogers and Dejroongruang, 1989
Rogers, D.W.; Dejroongruang, K., Enthalpies of hydrogenation of the dimethylpentenes, ethylpentenes, methylbutene, and trimethylbutene, J. Chem. Thermodyn., 1989, 21, 1115-1120. [all data]

Turner, Nettleton, et al., 1958
Turner, R.B.; Nettleton, J.E.; Perelman, Heats of Hydrogenation. VI. Heats of hydrogenation of some substituted ethylenes, J. Am. Chem. Soc., 1958, 80, 1430-1433. [all data]

Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D., Heats of isomerization of the nine heptanes, J. Res. NBS, 1941, 27, 519-528. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References