Ethylenediamine
- Formula: C2H8N2
- Molecular weight: 60.0983
- IUPAC Standard InChIKey: PIICEJLVQHRZGT-UHFFFAOYSA-N
- CAS Registry Number: 107-15-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 1,2-Ethanediamine; β-Aminoethylamine; Dimethylenediamine; Ethane-1,2-diamine; 1,2-Diaminoethane; 1,2-Ethylenediamine; H2NCH2CH2NH2; Aethaldiamin; Aethylenediamin; 1,2-Diaminoaethan; 1,2-Diamino-ethaan; 1,2-Diamino-ethano; Ethyleendiamine; Ethylendiamine; NCI-C60402; UN 1604
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -17.0 ± 0.59 | kJ/mol | Ccr | Good and Moore, 1970 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -63.01 ± 0.54 | kJ/mol | Ccr | Good and Moore, 1970 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1867.3 ± 0.50 | kJ/mol | Ccr | Good and Moore, 1970 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 202.42 | J/mol*K | N/A | Messerly, Finke, et al., 1975 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
172.59 | 298.15 | Messerly, Finke, et al., 1975 | T = 11 to 335 K.; DH |
178.7 | 313. | Hough, Mason, et al., 1950 | T = 313 to 333 K.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: (K+ • 2C2H8N2) + C2H8N2 = (K+ • 3C2H8N2)
Bond type: Polydentate bonding in non-hydrogen-bonded positive ions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (K+ • C2H8N2) + C2H8N2 = (K+ • 2C2H8N2)
Bond type: Polydentate bonding in non-hydrogen-bonded positive ions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 92.9 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 134. | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: (C2H9N+ • 2C2H8N2) + C2H8N2 = (C2H9N+ • 3C2H8N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 73.2 | kJ/mol | HPMS | Wincel and Herman, 1973 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 199. | J/mol*K | HPMS | Wincel and Herman, 1973 | gas phase; Entropy change is questionable; M |
By formula: K+ + C2H8N2 = (K+ • C2H8N2)
Bond type: Polydentate bonding in non-hydrogen-bonded positive ions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 108. | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: C2H8N2 + C2H5N = C4H13N3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82.8 ± 5.0 | kJ/mol | Cm | Dalin, Bobylev, et al., 1988 | liquid phase; solvent: Aqueous HCl; Kinetic; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
580000. | M | N/A |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good and Moore, 1970
Good, W.D.; Moore, R.T.,
Enthalpies of formation of ethylenediamine, 1,2,-propanediamine, 1,2,-butanediamine, 2-methyl-1,2-propanediamine, and isobutylamine C-N and N-F Thermochemical bond energies,
J. Chem. Eng. Data, 1970, 15, 150-154. [all data]
Messerly, Finke, et al., 1975
Messerly, J.F.; Finke, H.L.; Osborn, A.G.; Douslin, D.R.,
Low-temperature calorimetric and vapor-pressure studies on alkanediamines,
J. Chem. Thermodynam., 1975, 7, 1029-1046. [all data]
Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H.,
Heat capacities of several organic liquids,
J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes with Ethylene Diamine and Dimethoxyethane (Glyme) from Measurements of the Complexing Equilibria in the Gas Phase,
Can. J. Chem., 1976, 54, 16, 2594, https://doi.org/10.1139/v76-368
. [all data]
Wincel and Herman, 1973
Wincel, H.; Herman, J.A.,
Photoionization Study of Clustering Reactions in Diamines: Ethane-1,2-diamine, Propane-1,2-diamine and Propane-1,3-diamine,
J. Chem. Soc. Faraday Trans., 1973, 69, 1797, https://doi.org/10.1039/f19736901797
. [all data]
Dalin, Bobylev, et al., 1988
Dalin, A.R.; Bobylev, V.A.; Suslikov, V.F.; Kamskaya, O.I.; Tereshchenko, G.F.,
Nucleophilic cleavage and the formation of saturated heterocycles. VII. Kinetic and thermochemical study of reactions of aziridine with ethylene amines,
J. Gen. Chem. USSR, 1988, 58, 1868-1871. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.