Propanenitrile

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas12.30kcal/molCcrHall and Baldt, 1971 

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil370. ± 1.KAVGN/AAverage of 31 out of 35 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus180. ± 7.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple180.37KN/AWeber and Kilpatrick, 1962Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc561.3KN/ACastillo-Lopez and Trejo Rodriguez, 1987Uncertainty assigned by TRC = 0.2 K; Visual, TE with digital voltmeter calibr. by meas. on alkanes.; TRC
Tc558.7KN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 2. K; TRC
Tc558.85KN/AGuye and Mallet, 1902, 2Uncertainty assigned by TRC = 1. K; TRC
Tc558.85KN/AGuye and Mallet, 1902, 2Uncertainty assigned by TRC = 1. K; TRC
Quantity Value Units Method Reference Comment
Pc42.04atmN/ACastillo-Lopez and Trejo Rodriguez, 1987Uncertainty assigned by TRC = 0.099 atm; Visual; TRC
Pc41.25atmN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 0.9000 atm; TRC
Pc41.2000atmN/AGuye and Mallet, 1902, 2Uncertainty assigned by TRC = 0.8000 atm; TRC
Pc41.4000atmN/AGuye and Mallet, 1902, 2Uncertainty assigned by TRC = 0.8000 atm; TRC
Quantity Value Units Method Reference Comment
Δvap8.7 ± 0.2kcal/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
8.6319298.15N/AWeber and Kilpatrick, 1962, 2P = 6.29 kPa; DH
7.603371.N/AMajer and Svoboda, 1985 
8.63303.AStephenson and Malanowski, 1987Based on data from 288. to 371. K.; AC
8.77326.BGBaldt and Hall, 1971Based on data from 308. to 363. K.; AC
8.72280.N/AMilazzo, 1956Based on data from 189. to 295. K. See also Boublik, Fried, et al., 1984.; AC
8.58323.N/ADreisbach and Shrader, 1949Based on data from 308. to 370. K. See also Dreisbach and Martin, 1949 and Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
28.94298.15Weber and Kilpatrick, 1962, 2P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
308.7 to 370.503.611611036.424-83.76Dreisbach and Shrader, 1949Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.20180.4Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
2.31177.0Domalski and Hearing, 1996CAL
6.671180.4

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.40791176.96crystaline, IIcrystaline, IWeber and Kilpatrick, 1962, 2DH
1.2022180.37crystaline, IliquidWeber and Kilpatrick, 1962, 2DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
2.30176.96crystaline, IIcrystaline, IWeber and Kilpatrick, 1962, 2DH
6.666180.37crystaline, IliquidWeber and Kilpatrick, 1962, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H4N- + Hydrogen cation = Propanenitrile

By formula: C3H4N- + H+ = C3H5N

Quantity Value Units Method Reference Comment
Δr375.0 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr367.4 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

C3H4N- + Hydrogen cation = Propanenitrile

By formula: C3H4N- + H+ = C3H5N

Quantity Value Units Method Reference Comment
Δr392.0 ± 5.1kcal/molG+TSMerrill, Dahlke, et al., 1996gas phase; comparable to H2O.; B
Quantity Value Units Method Reference Comment
Δr384.0 ± 5.0kcal/molIMRBMerrill, Dahlke, et al., 1996gas phase; comparable to H2O.; B

Sodium ion (1+) + Propanenitrile = (Sodium ion (1+) • Propanenitrile)

By formula: Na+ + C3H5N = (Na+ • C3H5N)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
24.6298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

Ethyl isocyanide = Propanenitrile

By formula: C3H5N = C3H5N

Quantity Value Units Method Reference Comment
Δr-21.5 ± 1.0kcal/molCmBaghal-Vayjooee, Collister, et al., 1977gas phase; Heat of isomerization; ALS

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 774
NIST MS number 227644

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hall and Baldt, 1971
Hall, H.K., Jr.; Baldt, J.H., Thermochemistry of strained-ring bridgehead nitriles and esters, J. Am. Chem. Soc., 1971, 93, 140-145. [all data]

Weber and Kilpatrick, 1962
Weber, L.A.; Kilpatrick, J.E., Entropy and related thermodynamic properties of propionitrile, J. Chem. Phys., 1962, 36, 829. [all data]

Castillo-Lopez and Trejo Rodriguez, 1987
Castillo-Lopez, N.; Trejo Rodriguez, A., The critical temperatures and pressures of several n-alkanenitriles, J. Chem. Thermodyn., 1987, 19, 671. [all data]

Guye and Mallet, 1902
Guye, P.A.; Mallet, E., Critical Constant and Molecular Complexity of Several Organic Compds., C. R. Hebd. Seances Acad. Sci., 1902, 133, 168. [all data]

Guye and Mallet, 1902, 2
Guye, P.A.; Mallet, E., Measurement of Critical Constants, Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]

Weber and Kilpatrick, 1962, 2
Weber, L.A.; Kilpatrick, J.E., Entropy and related thermodynamic properties of propionitrile, J. Chem. Phys., 1962, 36, 829-834. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Baldt and Hall, 1971
Baldt, J.H.; Hall, H.K.K., Jr., Thermochemistry of strained-ring bridgehead nitriles and esters, J. Am. Chem. Soc., 1971, 93, 140-145. [all data]

Milazzo, 1956
Milazzo, G., Ann. Chim. (Rome), 1956, 46, 1105. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A., Vapor Pressure--Temperature Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054 . [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 12, 2875-2878, https://doi.org/10.1021/ie50480a053 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Merrill, Dahlke, et al., 1996
Merrill, G.N.; Dahlke, G.D.; Kass, S.R., beta-Cyanoethyl Anion: Lusus Naturae, J. Am. Chem. Soc., 1996, 118, 18, 4462, https://doi.org/10.1021/ja953796o . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Baghal-Vayjooee, Collister, et al., 1977
Baghal-Vayjooee, M.H.; Collister, J.L.; Pritchard, H.O., The enthalpy of isomerisation of methyl isocyanide, Can. J. Chem., 1977, 55, 2634-2636. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References