Propylamine
- Formula: C3H9N
- Molecular weight: 59.1103
- IUPAC Standard InChIKey: WGYKZJWCGVVSQN-UHFFFAOYSA-N
- CAS Registry Number: 107-10-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 1-Propanamine; n-Propylamine; Mono-n-propylamine; Monopropylamine; Propanamine; 1-Aminopropane; 1-Propylamine; n-C3H7NH2; Rcra waste number U194; UN 1277; NSC 7490
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -24.26 ± 0.09 | kcal/mol | Ccr | Smith and Good, 1967 | ALS |
ΔfH°liquid | -33.1 | kcal/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -565.3 ± 0.7 | kcal/mol | Ccr | Smith and Good, 1967 | ALS |
ΔcH°liquid | -560.3 | kcal/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 54.359 | cal/mol*K | N/A | Finke, Messerly, et al., 1972 | DH |
S°liquid | 54.54 | cal/mol*K | N/A | Vasil'ev, Petrov, et al., 1971 | Extrapolation below 60 K, 26.7 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
38.841 | 298.15 | Finke, Messerly, et al., 1972 | T = 12 to 350 K.; DH |
38.2 | 298.15 | Konicek and Wadso, 1971 | DH |
39.77 | 298.15 | Vasil'ev, Petrov, et al., 1971 | T = 60 to 300 K. Details deposited VINITI, No. 2530-71, 30 Jan 1971.; DH |
38.79 | 298.15 | Smith and Good, 1967 | DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
(C3H10N+ • 4) + = (C3H10N+ • 5)
By formula: (C3H10N+ • 4C3H9N) + C3H9N = (C3H10N+ • 5C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22. | cal/mol*K | N/A | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
3.4 | 174. | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
(C3H10N+ • 2) + = (C3H10N+ • 3)
By formula: (C3H10N+ • 2C3H9N) + C3H9N = (C3H10N+ • 3C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 17.1 | kcal/mol | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.1 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 42.3 | cal/mol*K | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
(C3H10N+ • ) + = (C3H10N+ • 2)
By formula: (C3H10N+ • C3H9N) + C3H9N = (C3H10N+ • 2C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 19.5 | kcal/mol | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.3 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 41.6 | cal/mol*K | HPMS | Zielinska and Wincel, 1974 | gas phase; Entropy change is questionable; M |
C3H8N- + =
By formula: C3H8N- + H+ = C3H9N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 398.4 ± 3.1 | kcal/mol | G+TS | Brauman and Blair, 1971 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 391.0 ± 3.0 | kcal/mol | IMRB | Brauman and Blair, 1971 | gas phase; B |
(C3H10N+ • 3) + = (C3H10N+ • 4)
By formula: (C3H10N+ • 3C3H9N) + C3H9N = (C3H10N+ • 4C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.7 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.1 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: K+ + C3H9N = (K+ • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.8 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.5 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: C3H10N+ + C3H9N = (C3H10N+ • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.5 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.6 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: Na+ + C3H9N = (Na+ • C3H9N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.9 ± 1.4 | kcal/mol | CIDT | Moision and Armentrout, 2002 | RCD |
Henry's Law data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
66. | M | N/A | |
80. | M | N/A |
References
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Smith and Good, 1967
Smith, N.K.; Good, W.D.,
Enthalpies of combustion and formation of propylamine, isopropylamine, and tert-butylamine,
J. Chem. Eng. Data, 1967, 12, 572-574. [all data]
Lemoult, 1907
Lemoult, M.P.,
Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques,
Ann. Chim. Phys., 1907, 12, 395-432. [all data]
Finke, Messerly, et al., 1972
Finke, H.L.; Messerly, J.F.; Todd, S.S.,
Thermodynamic properties of acrylonitrile, 1-aminopropane, 2-aminopropane, and 2-methyl-2-aminopropane,
J. Chem. Thermodynam., 1972, 4, 359-374. [all data]
Vasil'ev, Petrov, et al., 1971
Vasil'ev, I.A.; Petrov, V.M.; Ignat'ev, V.M.; Vvedenskii, A.A.,
Thermodynamic functions of a series of aliphatic amines. III. Entropy of n-propylamine,
Zhur. Fiz. Khim., 1971, 45, 1316. [all data]
Konicek and Wadso, 1971
Konicek, J.; Wadso, I.,
Thermochemical properties of some carboxylic acids, amines and N-substituted amides in aqueous solution,
Acta Chem. Scand., 1971, 25, 1541-1551. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Zielinska and Wincel, 1974
Zielinska, T.J.; Wincel, H.,
Gas - Phase Solvation of Protonated Aliphatic Amines: Methyl, Ethyl, n - Propyl, and Iso - Propylamine,
Chem. Phys. Lett., 1974, 25, 354. [all data]
Brauman and Blair, 1971
Brauman, J.I.; Blair, L.K.,
Gas phase acidities of amines,
J. Am. Chem. Soc., 1971, 93, 3911. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Moision and Armentrout, 2002
Moision, R.M.; Armentrout, P.B.,
Experimental and Theoretical Dissection of Sodium Cation/Glycine Interactions,
J. Phys. Chem A, 2002, 106, 43, 10350, https://doi.org/10.1021/jp0216373
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions T Temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.