Butane
- Formula: C4H10
- Molecular weight: 58.1222
- IUPAC Standard InChIKey: IJDNQMDRQITEOD-UHFFFAOYSA-N
- CAS Registry Number: 106-97-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Butane; Diethyl; Freon 600; Liquefied petroleum gas; LPG; n-C4H10; Butanen; Butani; Methylethylmethane; UN 1011; A 21; HC 600; HC 600 (hydrocarbon); R 600; R 600 (alkane)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Henry's Law data
Go To: Top, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.0011 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.0011 | L | N/A | ||
0.0012 | 3100. | L | N/A | |
0.0011 | V | N/A | ||
0.0049 | V | N/A |
IR Spectrum
Go To: Top, Henry's Law data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Henry's Law data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 18940 |
Vibrational and/or electronic energy levels
Go To: Top, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Trans form Symmetry: C2h Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
ag | 1 | CH3 d-str | 2965 | C | ia | 2965 | sln. | SF(ν20) | ||
ag | 2 | CH3 s-str | 2872 | C | ia | 2872 | sln. | |||
ag | 3 | CH2 s-str | 2853 | D | ia | 2853 | sln. | |||
ag | 4 | CH3 d-deform | 1460 | C | ia | 1460 | sln. | SF(ν22) | ||
ag | 5 | CH2 scis | 1442 | D | ia | 1442 | sln. | |||
ag | 6 | CH3 s-deform | 1382 | C | ia | CF | ||||
ag | 7 | CH2 wag | 1361 | D | ia | CF | ||||
ag | 8 | CH3 rock | 1151 | C | ia | 1151 | sln. | |||
ag | 9 | CC str | 1059 | C | ia | 1059 | sln. | |||
ag | 10 | CC str | 837 | C | ia | 837 | sln. | |||
ag | 11 | CCC deform | 425 | C | ia | 425 | sln. | |||
au | 12 | CH3 d-str | 2968 | C | 2968 S | solid solid | ia | SF(ν27) | ||
au | 13 | CH2 a-str | 2930 | C | 2930 S | solid solid | ia | |||
au | 14 | CH3 d-deform | 1461 | C | 1461 S | solid solid | ia | SF(ν30, )OV(ν30,ν31) | ||
au | 15 | CH2 twist | 1257 | C | 1257 W | sln. | ia | |||
au | 16 | CH3 rock | 948 | B | 948 M | solid solid | ia | |||
au | 17 | CH2 rock | 731 | B | 731 S | solid solid | ia | |||
au | 18 | CH3-CH2 torsion | 194 | E | ia | CF | ||||
au | 19 | CH2-CH2 torsion | 102 | E | ia | CF | ||||
bg | 20 | CH3 d-str | 2965 | C | ia | 2965 | sln. | SF(ν1) | ||
bg | 21 | CH2 a-str | 2912 | C | ia | 2912 | sln. | |||
bg | 22 | CH3 d-deform | 1460 | C | ia | 1460 | sln. | SF(ν4) | ||
bg | 23 | CH2 twist | 1300 | C | ia | 1300 | sln. | |||
bg | 24 | CH3 rock | 1180 | D | ia | CF | ||||
bg | 25 | CH2 rock | 803 | D | ia | CF | ||||
bg | 26 | CH3-CH2 torsion | 225 | E | ia | CF | ||||
bu | 27 | CH3 d-str | 2968 | C | 2968 S | solid solid | ia | SF(ν12) | ||
bu | 28 | CH3 s-str | 2870 | C | 2870 S | solid solid | ia | |||
bu | 29 | CH2 s-str | 2853 | E | ia | SF(ν3) | ||||
bu | 30 | CH3 d-deform | 1461 | C | 1461 S | solid solid | ia | SF(ν14, )OV(ν14,ν31) | ||
bu | 31 | CH2 scis | 1461 | C | 1461 S | solid solid | ia | OV(ν14,ν30) | ||
bu | 32 | CH3 s-deform | 1379 | B | 1379 M | solid solid | ia | |||
bu | 33 | CH2 wag | 1290 | B | 1290 W | solid solid | ia | |||
bu | 34 | CC str | 1009 | C | 1009 W | sln. | ia | |||
bu | 35 | CH3 rock | 964 | B | 964 M | solid solid | ia | |||
bu | 36 | CCC deform | 271 | E | ia | CF | ||||
Source: Shimanouchi, 1972
Gauche form Symmetry: C2 Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a | 1 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 2 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 3 | CH2 a-str | 2920 | D | Deduced from the corresponding frequencies of the trans form | |||||
a | 4 | CH3 s-str | 2870 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 5 | CH2 s-str | 2860 | D | Deduced from the corresponding frequencies of the trans form | |||||
a | 6 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 7 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 8 | CH2 scis | 1450 | D | Deduced from the corresponding frequencies of the trans form | |||||
a | 9 | CH3 s-deform | 1380 | C | Deduced from the corresponding frequencies of the trans form | |||||
a | 10 | CH2 wag | 1350 | C | 1350 W | liq. | ||||
a | 11 | CH2 twist | 1281 | C | 1281 | liq. | ||||
a | 12 | CH3 rock | 1168 | D | 1168 | liq. | ||||
a | 13 | CC str | 1077 | D | 1077 | liq. | ||||
a | 14 | CH3 rock | 980 | D | 980 | liq. | OV(ν32) | |||
a | 15 | CC str | 827 | D | 827 | liq. | ||||
a | 16 | CH2 rock | 788 | C | 788 M | liq. | 789 | liq. | ||
a | 17 | CCC deform | 320 | C | 320 | liq. | ||||
a | 18 | CH3-CH2 torsion | 201 | E | CF | |||||
a | 19 | CH2-CH2 torsion | 101 | E | CF | |||||
b | 20 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 21 | CH3 d-str | 2968 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 22 | CH2 a-str | 2920 | D | Deduced from the corresponding frequencies of the trans form | |||||
b | 23 | CH3 s-str | 2870 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 24 | CH2 s-str | 2860 | D | Deduced from the corresponding frequencies of the trans form | |||||
b | 25 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 26 | CH3 d-deform | 1460 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 27 | CH2 scis | 1450 | D | Deduced from the corresponding frequencies of the trans form | |||||
b | 28 | CH3 s-deform | 1380 | C | Deduced from the corresponding frequencies of the trans form | |||||
b | 29 | CH2 wag | 1370 | D | 1370 VW | liq. | ||||
b | 30 | CH2 twist | 1233 | C | 1233 W | liq. | ||||
b | 31 | CC str | 1133 | D | 1133 M | liq. | ||||
b | 32 | CH3 rock | 980 | D | 980 | liq. | OV(ν14,ν30) | |||
b | 33 | CH3 rock | 955 | C | 955 | liq. | ||||
b | 34 | CH2 rock | 747 | C | 747 S | liq. | ||||
b | 35 | CCC deform | 469 | D | CF | |||||
b | 36 | CH3-CH2 torsion | 197 | E | CF | |||||
Source: Shimanouchi, 1972
Notes
S | Strong |
M | Medium |
W | Weak |
VW | Very weak |
ia | Inactive |
CF | Calculated frequency |
SF | Calculation shows that the frequency approximately equals that of the vibration indicated in the parentheses. |
OV | Overlapped by band indicated in parentheses. |
B | 1~3 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References
- Symbols used in this document:
d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.