Diphenylmethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas165. ± 2.2kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas162.3 ± 2.3kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas164.8 ± 1.6kJ/molCcbSteele, Chirico, et al., 1995ALS
Δfgas156.6kJ/molN/AParks and Mosley, 1950Value computed using ΔfHliquid° value of 88.9 kj/mol from Parks and Mosley, 1950 and ΔvapH° value of 67.7 kj/mol from Steele, Chirico, et al., 1995.; DRB
Quantity Value Units Method Reference Comment
gas436.J/mol*KN/AMarcus Y., 1986This value calculated from published spectroscopic and structural data is in close agreement with estimations by a method of increments (440-451 J/mol*K [85MAR/LOE, Dorofeeva O.V., 1997]). Value obtained from calorimetric data (508.5 J/mol*K [85MAR/LOE]) authors do not regard as reliable. Results of statistical thermodynamics calculation [ Puranik P.G., 1962] are likely to be erroneous (S(300 K)=319 J/mol*K).; GT

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid97.1 ± 2.2kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfliquid97.1 ± 1.4kJ/molCcbSteele, Chirico, et al., 1995ALS
Δfliquid88.91kJ/molCcbParks and Mosley, 1950see Parks, West, et al., 1946; ALS
Quantity Value Units Method Reference Comment
Δcliquid-6927.2 ± 1.4kJ/molCcbSteele, Chirico, et al., 1995Corresponding Δfliquid = 96.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-6919.6 ± 1.3kJ/molCcbParks and Mosley, 1950see Parks, West, et al., 1946; Corresponding Δfliquid = 89.04 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
Δfsolid75.1 ± 2.2kJ/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid114.kJ/molCcbSchmidlin, 1906ALS
Quantity Value Units Method Reference Comment
Δcsolid-6673.kJ/molCcbSerijan and Wise, 1951Corresponding Δfsolid = -160. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-6931.2kJ/molCcbWise, Serijan, et al., 1951Corresponding Δfsolid = 100. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-6929.54 ± 0.84kJ/molCcbCoops, Mulder, et al., 1946Reanalyzed by Cox and Pilcher, 1970, Original value = -6927.0 ± 0.8 kJ/mol; Corresponding Δfsolid = 98.95 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-6945.0kJ/molCcbSchmidlin, 1906Corresponding Δfsolid = 114. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar239.3J/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 77.86 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
266.1303.Duff and Everett, 1956T = 303 to 353 K.; DH
279.9300.Kurbatov, 1950T = 29 to 254°C.; DH
233.5298.5Smith and Andrews, 1931T = 102 to 322 K. Value is unsmoothed experimental datum.; DH
223.8282.5Huffman, Parks, et al., 1930T = 89 to 312 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil535. ± 4.KAVGN/AAverage of 51 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus299. ± 2.KAVGN/AAverage of 83 out of 85 values; Individual data points
Quantity Value Units Method Reference Comment
Tc780. ± 60.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc27. ± 3.barN/ATsonopoulos and Ambrose, 1995 
Pc27.10barN/AWieczorek and Kobayashi, 1980Uncertainty assigned by TRC = 3.00 bar; TRC
Pc59.7817barN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 3.0398 bar; TRC
Pc28.5736barN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 1.0132 bar; TRC
Pc28.5736barN/AGuye and Mallet, 1902Uncertainty assigned by TRC = 1.0132 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.563l/molN/ATsonopoulos and Ambrose, 1995 
Quantity Value Units Method Reference Comment
ρc1.8 ± 0.3mol/lN/ATsonopoulos and Ambrose, 1995 
ρc1.780mol/lN/AStephenson, 1992Uncertainty assigned by TRC = 0.12 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap65. ± 10.kJ/molAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub87.2 ± 0.7kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δsub87.6 ± 0.8kJ/molN/AVerevkin, 1999AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
64.1 ± 0.1340.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
61.0 ± 0.1380.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
57.9 ± 0.1420.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
55.0 ± 0.1460.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
52.0 ± 0.2500.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
48.9 ± 0.3540.IP,EBChirico and Steele, 2005Based on data from 330. to 588. K.; AC
66.4 ± 0.5323.GSVerevkin, 1999Based on data from 303. to 343. K.; AC
61.8368.N/ASohda, Okazaki, et al., 1990Based on data from 353. to 433. K.; AC
63.7363.N/ASasse, N'guimbi, et al., 1989Based on data from 303. to 402. K.; AC
72.2310.AStephenson and Malanowski, 1987Based on data from 295. to 383. K.; AC
56.7438.AStephenson and Malanowski, 1987Based on data from 423. to 583. K.; AC
55.8445.N/AWieczorek and Kobayashi, 1981AC
49.0535.N/AWieczorek and Kobayashi, 1981AC
54.2505.N/ACrafts, 1915Based on data from 490. to 555. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
88.5 ± 0.8284.GSVerevkin, 1999Based on data from 273. to 295. K.; AC
71.5286.EMSasse, N'guimbi, et al., 1989Based on data from 273. to 298. K.; AC
83.3 ± 3.3286.HSAChickos, Annunziata, et al., 1986Based on data from 276. to 295. K.; AC
82.47 ± 0.63299.8VAihara, 1959crystal phase; ALS
64.0278. to 299.N/ABloink, Pausacker, et al., 1951See also Jones, 1960.; AC
72.0 ± 0.8297.N/AWolf and Weghofer, 1938AC
72.0 ± 0.8297.VWolf and Weghofer, 1938, 2ALS

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
19.01298.4N/AChirico and Steele, 2005AC
18.58298.3ACDomalski and Hearing, 1996AC
18.569298.3N/AHuffman, Parks, et al., 1930DH
19.050299.4N/AEykman, 1889DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
62.34298.3Domalski and Hearing, 1996CAL
62.25298.3Huffman, Parks, et al., 1930DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Steele, Chirico, et al., 1995
Steele, W.V.; Chirico, R.D.; Smith, N.K., The standard enthalpies of formation of 2-methylbiphenyl and diphenylmethane, J. Chem. Thermodyn., 1995, 27, 671-678. [all data]

Parks and Mosley, 1950
Parks, G.S.; Mosley, J.R., Redetermination of the heat of combustion of diphenylmethane, J. Am. Chem. Soc., 1950, 72, 1850. [all data]

Marcus Y., 1986
Marcus Y., Entropies of tetrahedral M-phenyl species, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 993-1006. [all data]

Dorofeeva O.V., 1997
Dorofeeva O.V., Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]

Puranik P.G., 1962
Puranik P.G., Vibrational spectra, potential constants, and thermodynamic properties of diphenylmethane, Proc. Indian Acad. Sci., 1962, A56, 233-238. [all data]

Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A., Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols, J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]

Schmidlin, 1906
Schmidlin, M.J., Recherches chimiques et thermochimiques sur la constitution des rosanilines, Ann. Chim. Phys., 1906, 1, 195-256. [all data]

Serijan and Wise, 1951
Serijan, K.T.; Wise, P.H., Dicyclic hydrocarbons. III. Diphenyl- and dicyclohexylalkanes through C15, J. Am. Chem. Soc., 1951, 73, 4766-4769. [all data]

Wise, Serijan, et al., 1951
Wise, C.H.; Serijan, K.T.; Goodman, I.A., NACA Technical Report 1003, NACA Technical Report 1003, 1951, 1-10. [all data]

Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J., The heats of combustion of a number of hydrocarbons, Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

Duff and Everett, 1956
Duff, G.M.; Everett, D.H., The heat capacity of the system benzene + diphenylmethane, Trans. Faraday Soc., 1956, 52, 753-763. [all data]

Kurbatov, 1950
Kurbatov, V.Ya., Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings, Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]

Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H., Thermal energy studies. I. Phenyl derivatives of methane, ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Wieczorek and Kobayashi, 1980
Wieczorek, S.A.; Kobayashi, R., Vapor pressure measurements of diphenylmethane, thianaphthene, and bicyclohexyl at elevated temperatures, J. Chem. Eng. Data, 1980, 25, 302. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Guye and Mallet, 1902
Guye, P.A.; Mallet, E., Measurement of Critical Constants, Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]

Stephenson, 1992
Stephenson, R.M., Mutual solubilities: water-ketones, water-ethers, and water-gasoline- alcohols, J. Chem. Eng. Data, 1992, 37, 80-95. [all data]

Verevkin, 1999
Verevkin, Sergey P., Thermochemical Properties of Diphenylalkanes, J. Chem. Eng. Data, 1999, 44, 2, 175-179, https://doi.org/10.1021/je980200e . [all data]

Chirico and Steele, 2005
Chirico, Robert D.; Steele, William V., Thermodynamic Properties of Diphenylmethane «8224», J. Chem. Eng. Data, 2005, 50, 3, 1052-1059, https://doi.org/10.1021/je050034s . [all data]

Sohda, Okazaki, et al., 1990
Sohda, M.; Okazaki, M.; Iwai, Y.; Arai, Y.; Sakoguchi, A.; Ueoka, R.; Kato, Y., Vapor pressures of cyclohexylbenzene and diphenylmethane, The Journal of Chemical Thermodynamics, 1990, 22, 6, 607-608, https://doi.org/10.1016/0021-9614(90)90152-G . [all data]

Sasse, N'guimbi, et al., 1989
Sasse, K.; N'guimbi, J.; Jose, J.; Merlin, J.C., Tension de vapeur d'hydrocarbures polyaromatiques dans le domaine 10-3--10 Torr, Thermochimica Acta, 1989, 146, 53-61, https://doi.org/10.1016/0040-6031(89)87075-3 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Wieczorek and Kobayashi, 1981
Wieczorek, Stefan A.; Kobayashi, Riki, Vapor-pressure measurements of 1-methylnaphthalene, 2-methylnaphthalene, and 9,10-dihydrophenanthrene at elevated temperatures, J. Chem. Eng. Data, 1981, 26, 1, 8-11, https://doi.org/10.1021/je00023a005 . [all data]

Crafts, 1915
Crafts, J.M., J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 105. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Chickos, Annunziata, et al., 1986
Chickos, J.S.; Annunziata, R.; Ladon, L.H.; Hyman, A.S.; Liebman, J.F., Estimating heats of sublimation of hydrocarbons. A semiempirical approach, J. Org. Chem., 1986, 51, 4311-4314. [all data]

Aihara, 1959
Aihara, A., Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy, Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]

Bloink, Pausacker, et al., 1951
Bloink, G.J.; Pausacker, K.H.; Jones, A.S.; Lee, W.A.; Peacocke, A.R.; Bright, Norman F.H.; Moffatt, J.S.; Wilkinson, J.H., Notes, J. Chem. Soc., 1951, 622, https://doi.org/10.1039/jr9510000622 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z., Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]

Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Eykman, 1889
Eykman, J.F., Zur kryoskopischen Molekulargewichtsbestimmung, Z. Physik. Chem., 1889, 4, 497-519. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References