Diphenylmethane
- Formula: C13H12
- Molecular weight: 168.2344
- IUPAC Standard InChIKey: CZZYITDELCSZES-UHFFFAOYSA-N
- CAS Registry Number: 101-81-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene, 1,1'-methylenebis-; Methane, diphenyl-; Benzene, (phenylmethyl)-; Benzylbenzene; Ditan; Ditane; Benzene, benzyl-; Toluene, α-phenyl-; 1,1'-Dimethylenebis(benzene); NSC 4708
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 165. ± 2.2 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 162.3 ± 2.3 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°gas | 164.8 ± 1.6 | kJ/mol | Ccb | Steele, Chirico, et al., 1995 | ALS |
ΔfH°gas | 156.6 | kJ/mol | N/A | Parks and Mosley, 1950 | Value computed using ΔfHliquid° value of 88.9 kj/mol from Parks and Mosley, 1950 and ΔvapH° value of 67.7 kj/mol from Steele, Chirico, et al., 1995.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 436. | J/mol*K | N/A | Marcus Y., 1986 | This value calculated from published spectroscopic and structural data is in close agreement with estimations by a method of increments (440-451 J/mol*K [85MAR/LOE, Dorofeeva O.V., 1997]). Value obtained from calorimetric data (508.5 J/mol*K [85MAR/LOE]) authors do not regard as reliable. Results of statistical thermodynamics calculation [ Puranik P.G., 1962] are likely to be erroneous (S(300 K)=319 J/mol*K).; GT |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 97.1 ± 2.2 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°liquid | 97.1 ± 1.4 | kJ/mol | Ccb | Steele, Chirico, et al., 1995 | ALS |
ΔfH°liquid | 88.91 | kJ/mol | Ccb | Parks and Mosley, 1950 | see Parks, West, et al., 1946; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -6927.2 ± 1.4 | kJ/mol | Ccb | Steele, Chirico, et al., 1995 | Corresponding ΔfHºliquid = 96.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -6919.6 ± 1.3 | kJ/mol | Ccb | Parks and Mosley, 1950 | see Parks, West, et al., 1946; Corresponding ΔfHºliquid = 89.04 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | 75.1 ± 2.2 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔfH°solid | 114. | kJ/mol | Ccb | Schmidlin, 1906 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -6673. | kJ/mol | Ccb | Serijan and Wise, 1951 | Corresponding ΔfHºsolid = -160. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -6931.2 | kJ/mol | Ccb | Wise, Serijan, et al., 1951 | Corresponding ΔfHºsolid = 100. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -6929.54 ± 0.84 | kJ/mol | Ccb | Coops, Mulder, et al., 1946 | Reanalyzed by Cox and Pilcher, 1970, Original value = -6927.0 ± 0.8 kJ/mol; Corresponding ΔfHºsolid = 98.95 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -6945.0 | kJ/mol | Ccb | Schmidlin, 1906 | Corresponding ΔfHºsolid = 114. kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 239.3 | J/mol*K | N/A | Huffman, Parks, et al., 1930 | Extrapolation below 90 K, 77.86 J/mol*K.; DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
266.1 | 303. | Duff and Everett, 1956 | T = 303 to 353 K.; DH |
279.9 | 300. | Kurbatov, 1950 | T = 29 to 254°C.; DH |
233.5 | 298.5 | Smith and Andrews, 1931 | T = 102 to 322 K. Value is unsmoothed experimental datum.; DH |
223.8 | 282.5 | Huffman, Parks, et al., 1930 | T = 89 to 312 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 535. ± 4. | K | AVG | N/A | Average of 51 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 299. ± 2. | K | AVG | N/A | Average of 83 out of 85 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 780. ± 60. | K | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 27. ± 3. | bar | N/A | Tsonopoulos and Ambrose, 1995 | |
Pc | 27.10 | bar | N/A | Wieczorek and Kobayashi, 1980 | Uncertainty assigned by TRC = 3.00 bar; TRC |
Pc | 59.7817 | bar | N/A | Glaser and Ruland, 1957 | Uncertainty assigned by TRC = 3.0398 bar; TRC |
Pc | 28.5736 | bar | N/A | Guye and Mallet, 1902 | Uncertainty assigned by TRC = 1.0132 bar; TRC |
Pc | 28.5736 | bar | N/A | Guye and Mallet, 1902 | Uncertainty assigned by TRC = 1.0132 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.563 | l/mol | N/A | Tsonopoulos and Ambrose, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 1.8 ± 0.3 | mol/l | N/A | Tsonopoulos and Ambrose, 1995 | |
ρc | 1.780 | mol/l | N/A | Stephenson, 1992 | Uncertainty assigned by TRC = 0.12 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 65. ± 10. | kJ/mol | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 87.2 ± 0.7 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔsubH° | 87.6 ± 0.8 | kJ/mol | N/A | Verevkin, 1999 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
64.1 ± 0.1 | 340. | IP,EB | Chirico and Steele, 2005 | Based on data from 330. to 588. K.; AC |
61.0 ± 0.1 | 380. | IP,EB | Chirico and Steele, 2005 | Based on data from 330. to 588. K.; AC |
57.9 ± 0.1 | 420. | IP,EB | Chirico and Steele, 2005 | Based on data from 330. to 588. K.; AC |
55.0 ± 0.1 | 460. | IP,EB | Chirico and Steele, 2005 | Based on data from 330. to 588. K.; AC |
52.0 ± 0.2 | 500. | IP,EB | Chirico and Steele, 2005 | Based on data from 330. to 588. K.; AC |
48.9 ± 0.3 | 540. | IP,EB | Chirico and Steele, 2005 | Based on data from 330. to 588. K.; AC |
66.4 ± 0.5 | 323. | GS | Verevkin, 1999 | Based on data from 303. to 343. K.; AC |
61.8 | 368. | N/A | Sohda, Okazaki, et al., 1990 | Based on data from 353. to 433. K.; AC |
63.7 | 363. | N/A | Sasse, N'guimbi, et al., 1989 | Based on data from 303. to 402. K.; AC |
72.2 | 310. | A | Stephenson and Malanowski, 1987 | Based on data from 295. to 383. K.; AC |
56.7 | 438. | A | Stephenson and Malanowski, 1987 | Based on data from 423. to 583. K.; AC |
55.8 | 445. | N/A | Wieczorek and Kobayashi, 1981 | AC |
49.0 | 535. | N/A | Wieczorek and Kobayashi, 1981 | AC |
54.2 | 505. | N/A | Crafts, 1915 | Based on data from 490. to 555. K. See also Boublik, Fried, et al., 1984.; AC |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
88.5 ± 0.8 | 284. | GS | Verevkin, 1999 | Based on data from 273. to 295. K.; AC |
71.5 | 286. | EM | Sasse, N'guimbi, et al., 1989 | Based on data from 273. to 298. K.; AC |
83.3 ± 3.3 | 286. | HSA | Chickos, Annunziata, et al., 1986 | Based on data from 276. to 295. K.; AC |
82.47 ± 0.63 | 299.8 | V | Aihara, 1959 | crystal phase; ALS |
64.0 | 278. to 299. | N/A | Bloink, Pausacker, et al., 1951 | See also Jones, 1960.; AC |
72.0 ± 0.8 | 297. | N/A | Wolf and Weghofer, 1938 | AC |
72.0 ± 0.8 | 297. | V | Wolf and Weghofer, 1938, 2 | ALS |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
19.01 | 298.4 | N/A | Chirico and Steele, 2005 | AC |
18.58 | 298.3 | AC | Domalski and Hearing, 1996 | AC |
18.569 | 298.3 | N/A | Huffman, Parks, et al., 1930 | DH |
19.050 | 299.4 | N/A | Eykman, 1889 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
62.34 | 298.3 | Domalski and Hearing, 1996 | CAL |
62.25 | 298.3 | Huffman, Parks, et al., 1930 | DH |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Steele, Chirico, et al., 1995
Steele, W.V.; Chirico, R.D.; Smith, N.K.,
The standard enthalpies of formation of 2-methylbiphenyl and diphenylmethane,
J. Chem. Thermodyn., 1995, 27, 671-678. [all data]
Parks and Mosley, 1950
Parks, G.S.; Mosley, J.R.,
Redetermination of the heat of combustion of diphenylmethane,
J. Am. Chem. Soc., 1950, 72, 1850. [all data]
Marcus Y., 1986
Marcus Y.,
Entropies of tetrahedral M-phenyl species,
J. Chem. Soc., Faraday Trans. 1, 1986, 82, 993-1006. [all data]
Dorofeeva O.V., 1997
Dorofeeva O.V.,
Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]
Puranik P.G., 1962
Puranik P.G.,
Vibrational spectra, potential constants, and thermodynamic properties of diphenylmethane,
Proc. Indian Acad. Sci., 1962, A56, 233-238. [all data]
Parks, West, et al., 1946
Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A.,
Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols,
J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]
Schmidlin, 1906
Schmidlin, M.J.,
Recherches chimiques et thermochimiques sur la constitution des rosanilines,
Ann. Chim. Phys., 1906, 1, 195-256. [all data]
Serijan and Wise, 1951
Serijan, K.T.; Wise, P.H.,
Dicyclic hydrocarbons. III. Diphenyl- and dicyclohexylalkanes through C15,
J. Am. Chem. Soc., 1951, 73, 4766-4769. [all data]
Wise, Serijan, et al., 1951
Wise, C.H.; Serijan, K.T.; Goodman, I.A.,
NACA Technical Report 1003,
NACA Technical Report 1003, 1951, 1-10. [all data]
Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J.,
The heats of combustion of a number of hydrocarbons,
Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C.,
Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]
Duff and Everett, 1956
Duff, G.M.; Everett, D.H.,
The heat capacity of the system benzene + diphenylmethane,
Trans. Faraday Soc., 1956, 52, 753-763. [all data]
Kurbatov, 1950
Kurbatov, V.Ya.,
Specific heats of liquids. III. Specific heat of hydrocarbons with several noncondensed rings,
Zhur. Obshch. Khim., 1950, 20, 1139-1144. [all data]
Smith and Andrews, 1931
Smith, R.H.; Andrews, D.H.,
Thermal energy studies. I. Phenyl derivatives of methane,
ethane and some related compounds. J. Am. Chem. Soc., 1931, 53, 3644-3660. [all data]
Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons,
J. Chem. Eng. Data, 1995, 40, 547-558. [all data]
Wieczorek and Kobayashi, 1980
Wieczorek, S.A.; Kobayashi, R.,
Vapor pressure measurements of diphenylmethane, thianaphthene, and bicyclohexyl at elevated temperatures,
J. Chem. Eng. Data, 1980, 25, 302. [all data]
Glaser and Ruland, 1957
Glaser, F.; Ruland, H.,
Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen,
Chem. Ing. Techn., 1957, 29, 772. [all data]
Guye and Mallet, 1902
Guye, P.A.; Mallet, E.,
Measurement of Critical Constants,
Arch. Sci. Phys. Nat., 1902, 13, 274-296. [all data]
Stephenson, 1992
Stephenson, R.M.,
Mutual solubilities: water-ketones, water-ethers, and water-gasoline- alcohols,
J. Chem. Eng. Data, 1992, 37, 80-95. [all data]
Verevkin, 1999
Verevkin, Sergey P.,
Thermochemical Properties of Diphenylalkanes,
J. Chem. Eng. Data, 1999, 44, 2, 175-179, https://doi.org/10.1021/je980200e
. [all data]
Chirico and Steele, 2005
Chirico, Robert D.; Steele, William V.,
Thermodynamic Properties of Diphenylmethane «8224»,
J. Chem. Eng. Data, 2005, 50, 3, 1052-1059, https://doi.org/10.1021/je050034s
. [all data]
Sohda, Okazaki, et al., 1990
Sohda, M.; Okazaki, M.; Iwai, Y.; Arai, Y.; Sakoguchi, A.; Ueoka, R.; Kato, Y.,
Vapor pressures of cyclohexylbenzene and diphenylmethane,
The Journal of Chemical Thermodynamics, 1990, 22, 6, 607-608, https://doi.org/10.1016/0021-9614(90)90152-G
. [all data]
Sasse, N'guimbi, et al., 1989
Sasse, K.; N'guimbi, J.; Jose, J.; Merlin, J.C.,
Tension de vapeur d'hydrocarbures polyaromatiques dans le domaine 10-3--10 Torr,
Thermochimica Acta, 1989, 146, 53-61, https://doi.org/10.1016/0040-6031(89)87075-3
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Wieczorek and Kobayashi, 1981
Wieczorek, Stefan A.; Kobayashi, Riki,
Vapor-pressure measurements of 1-methylnaphthalene, 2-methylnaphthalene, and 9,10-dihydrophenanthrene at elevated temperatures,
J. Chem. Eng. Data, 1981, 26, 1, 8-11, https://doi.org/10.1021/je00023a005
. [all data]
Crafts, 1915
Crafts, J.M.,
J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 105. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Chickos, Annunziata, et al., 1986
Chickos, J.S.; Annunziata, R.; Ladon, L.H.; Hyman, A.S.; Liebman, J.F.,
Estimating heats of sublimation of hydrocarbons. A semiempirical approach,
J. Org. Chem., 1986, 51, 4311-4314. [all data]
Aihara, 1959
Aihara, A.,
Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy,
Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]
Bloink, Pausacker, et al., 1951
Bloink, G.J.; Pausacker, K.H.; Jones, A.S.; Lee, W.A.; Peacocke, A.R.; Bright, Norman F.H.; Moffatt, J.S.; Wilkinson, J.H.,
Notes,
J. Chem. Soc., 1951, 622, https://doi.org/10.1039/jr9510000622
. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z.,
Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]
Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Eykman, 1889
Eykman, J.F.,
Zur kryoskopischen Molekulargewichtsbestimmung,
Z. Physik. Chem., 1889, 4, 497-519. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,solid Constant pressure heat capacity of solid Pc Critical pressure S°gas Entropy of gas at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Vc Critical volume ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.