Styrene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas146.9 ± 1.0kJ/molCcbProsen and Rossini, 1945ALS
Δfgas151.5kJ/molN/ALandrieu, Baylocq, et al., 1929Value computed using ΔfHliquid° value of 108.0 kj/mol from Landrieu, Baylocq, et al., 1929 and ΔvapH° value of 43.5 kj/mol from Prosen and Rossini, 1945.; DRB
Δfgas131.5 ± 4.0kJ/molCcbN/AValue computed using ΔfHliquid° from missing citation and ΔvapH° value of 43.9 kJ/mol from Pitzer, Guttman, et al., 1946. recalculated with modern CO2,H2O thermo; estimated uncertainty (NOTE all values in source also have wrong sign); DRB
Δfgas-15.1kJ/molN/AMoureu and Andre, 1914Value computed using ΔfHliquid° value of -58.6 kj/mol from Moureu and Andre, 1914 and ΔvapH° value of 43.5 kj/mol from Prosen and Rossini, 1945.; DRB
Quantity Value Units Method Reference Comment
gas345.1 ± 2.1J/mol*KN/APitzer K.S., 1946S(298.16 K)=343.38 J/mol*K was obtained from earlier experimental data [ Guttman L., 1943].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
151.29 ± 0.76373.15Scott R.B., 1945GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
45.7650.Thermodynamics Research Center, 1997p=1 bar. Recommended values agree with other statistically calculated values of S(T) and Cp(T) [ Beckett C.W., 1946] within 0.8 and 1.9 J/mol*K, respectively.; GT
54.19100.
65.81150.
81.77200.
110.03273.15
120.19298.15
120.94300.
159.79400.
192.59500.
219.0600.
240.4700.
258.0800.
272.8900.
285.21000.
295.81100.
304.91200.
312.71300.
319.41400.
325.21500.

Ion clustering data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C3H9Si+ + Styrene = (C3H9Si+ • Styrene)

By formula: C3H9Si+ + C8H8 = (C3H9Si+ • C8H8)

Quantity Value Units Method Reference Comment
Δr153.kJ/molPHPMSLi and Stone, 1989gas phase; condensation
Quantity Value Units Method Reference Comment
Δr177.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation

References

Go To: Top, Gas phase thermochemistry data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of formation and combustion of 1,3-butadiene and styrene, J. Res. NBS, 1945, 34, 59-63. [all data]

Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R., Etude thermochimique dans la serie furanique, Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]

Pitzer, Guttman, et al., 1946
Pitzer, K.S.; Guttman, L.; Westrum, E.F., Jr., The heat capacity, heats of fusion and vaporization, vapor pressure, entropy, vibration frequencies and barrier to internal rotation of styrene, J. Am. Chem. Soc., 1946, 68, 2209-22. [all data]

Moureu and Andre, 1914
Moureu, C.; Andre, E., Thermochimie des composes acetyleniques, Ann. Chim. Phys., 1914, 1, 113-145. [all data]

Pitzer K.S., 1946
Pitzer K.S., Jr., The heat capacity, heats of fusion and vaporization, vapor pressure, entropy, vibrational frequencies, and barrier to internal rotation of styrene, J. Am. Chem. Soc., 1946, 68, 2209-2212. [all data]

Guttman L., 1943
Guttman L., Jr., The thermodynamics of styrene (phenylethylene), including equilibrium of formation from ethylbenzene, J. Am. Chem. Soc., 1943, 65, 1246-1247. [all data]

Scott R.B., 1945
Scott R.B., Specific heats of gaseous 1,3-butadiene, isobutene, styrene, and ethylbenzene, J. Res. Nat. Bur. Stand., 1945, 34, 243-254. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Beckett C.W., 1946
Beckett C.W., The thermodynamics of styrene and its methyl derivatives, J. Am. Chem. Soc., 1946, 68, 2213-2214. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Ion clustering data, References