Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Ethylbenzene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C8H9- + Hydrogen cation = Ethylbenzene

By formula: C8H9- + H+ = C8H10

Quantity Value Units Method Reference Comment
Deltar1699. ± 19.kJ/molCIDTGraul and Squires, 1990gas phase; From decarboxylation threshold. Stable form probably the spiro[2.5]octadienide Maas and van Keelen, 1989; B
Quantity Value Units Method Reference Comment
Deltar1664. ± 20.kJ/molH-TSGraul and Squires, 1990gas phase; From decarboxylation threshold. Stable form probably the spiro[2.5]octadienide Maas and van Keelen, 1989; B

C8H9- + Hydrogen cation = Ethylbenzene

By formula: C8H9- + H+ = C8H10

Quantity Value Units Method Reference Comment
Deltar1589. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Deltar1562. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

2Hydrogen + Phenylethyne = Ethylbenzene

By formula: 2H2 + C8H6 = C8H10

Quantity Value Units Method Reference Comment
Deltar-276.6 ± 0.3kJ/molChydDavis, Allinger, et al., 1985liquid phase; solvent: Hexane; ALS
Deltar-271. ± 4.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Deltar-296. ± 4.2kJ/molChydFlitcroft and Skinner, 1958liquid phase; ALS

Nitric oxide anion + Ethylbenzene = (Nitric oxide anion bullet Ethylbenzene)

By formula: NO- + C8H10 = (NO- bullet C8H10)

Quantity Value Units Method Reference Comment
Deltar186.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Ethylbenzene + 3Hydrogen = Cyclohexane, ethyl-

By formula: C8H10 + 3H2 = C8H16

Quantity Value Units Method Reference Comment
Deltar-201.6 ± 0.42kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -204.7 ± 0.4 kJ/mol; At 355 °K; ALS

Chlorine anion + Ethylbenzene = (Chlorine anion bullet Ethylbenzene)

By formula: Cl- + C8H10 = (Cl- bullet C8H10)

Quantity Value Units Method Reference Comment
Deltar20.9kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
21.300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Ethylbenzene + Benzene, bromo- = C8H9Br + Benzene

By formula: C8H10 + C6H5Br = C8H9Br + C6H6

Quantity Value Units Method Reference Comment
Deltar-0.59 ± 0.021kJ/molCmMerdzhanov, Alenin, et al., 1982gas phase; Heat of isomerization at 349 K; ALS

Styrene + Hydrogen = Ethylbenzene

By formula: C8H8 + H2 = C8H10

Quantity Value Units Method Reference Comment
Deltar-117.2 ± 1.7kJ/molChydAbboud, Jimenez, et al., 1995liquid phase; solvent: Hydrocarbon; Like gas phase; ALS

Ethylbenzene = Styrene + Hydrogen

By formula: C8H10 = C8H8 + H2

Quantity Value Units Method Reference Comment
Deltar124.85kJ/molEqkGhosh, Ram Das Guha, et al., 1945gas phase; ALS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Maas and van Keelen, 1989
Maas, W.P.M.; van Keelen, P.A., On the Generation and Characterization of the Spiro[2,5]Octadienyl Anion in the Gas Phase, Org. Mass Spectrom., 1989, 24, 8, 546, https://doi.org/10.1002/oms.1210240807 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Davis, Allinger, et al., 1985
Davis, H.E.; Allinger, N.L.; Rogers, D.W., Enthalpies of hydrogenation of phenylalkynes: indirect determination of the enthalpy of formation of diphenylcyclopropenone, J. Org. Chem., 1985, 50, 3601-3604. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Flitcroft and Skinner, 1958
Flitcroft, T.L.; Skinner, H.A., Heats of hydrogenation Part 2.-Acetylene derivatives, Trans. Faraday Soc., 1958, 54, 47-53. [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Merdzhanov, Alenin, et al., 1982
Merdzhanov, V.R.; Alenin, V.I.; Nesterova, T.N.; Rozhnov, A.M., Study of equilibrium transformation of ethylbromobenzenes, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1982, 25, 1047-1049. [all data]

Abboud, Jimenez, et al., 1995
Abboud, J.-L.M.; Jimenez, P.; Roux, M.V.; Turrion, C.; Lopez-Mardomingo, C.; Podosenin, A.; Rogers, D.W.; Liebman, J.F., Interrelations of the energetics of amides and alkenes: enthalpies of formation of N,N-dimethyl dertivatives of pivalamide, 1-adamantylcarboxamide and benzamide, and of styrene and its a-, trans-«beta»- and «beta»,«beta»-methylated derivates, J. Phys. Org. Chem., 1995, 8, 15-25. [all data]

Ghosh, Ram Das Guha, et al., 1945
Ghosh, J.C.; Ram Das Guha, S.; Roy, A.N., Chemical equilibrium in styrene formation from ethyl-benzene at low pressures, Curr. Sci., 1945, 14, 269. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References